Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale community protein annotation - WikiProteins

28.05.2008
Today sees the launch of a new collaborative website initially focusing on proteins and their role in biology and medicine.

The WikiProfessional technology underlying the site has been developed based upon the collaborative Wikipedia approach. Described in BioMed Central’s open access journal Genome Biology, WikiProteins provides a method for community annotation on a huge scale.

The article is written by Barend Mons of the Erasmus Medical Center in Rotterdam, and the Leiden University Medical Center, The Netherlands, and his co-authors from Brazil, The Netherlands, Switzerland, the UK and the USA. They include Amos Bairoch of UniProt, Michael Ashburner of GO and Jimmy Wales, the founder of Wikipedia.

The source material for WikiProteins comes from a mixture of existing authoritative databases (such as the Unified Medical Language System, UniProtKB/Swiss-Prot, IntAct and GO), supplemented by concepts mined from scientific papers published in public literature databases. The automated data mining identifies ‘facts’ in these available resources, such as protein functions or protein-disease relationships. This process created over one million biomedical concept clouds – called ‘Knowlets’ – around each individual concept. The developers of the site now hope that many researchers will follow their call to annotate, via WikiProteins, the Knowlets for which they are leading experts. The method enables researchers to add data even from sources that are not openly available, such as from journals only accessible via publishers’ databases, immensely enhancing the potential for comprehensive coverage. Each page of text called up via the system is automatically indexed and concepts are connected to the WikiSpace, so that their definition comes up and the information can be edited directly from the page.

... more about:
»Protein »WikiProtein

The resulting data in the Wiki is fully and freely accessible to the public, and entries can be annotated by any registered user. Mons said: “We here call on a million minds to annotate a million concepts and collect new facts from full-text literature with the immediate reward of collaborative knowledge discovery and recognition of Wiki-contributions to the scientific community.”

Launched in 2001, Wikipedia is a freely available, collaboratively created online encyclopedia. WikiProteins maps to Wikipedia and has been created as part of the WikiProfessional initiative and there are plans to add new workspaces such as WikiPeople (an intellectual networking environment), and WikiChemicals for other communities.

A preview of the WikiProtein technology is available at http://conceptweblinker.wikiprofessional.org/default.py?url=nph-proxy.cgi/010000A/http/genomebiology.wikiprofessional.org/monsarticle.htm

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com/

Further reports about: Protein WikiProtein

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>