Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer algae's "fingerprints" wrap up the case

27.05.2008
Phytoplankton are microscopic plants that are the base of the food chain in oceans and lakes.

Some phytoplankton can produce toxins that are harmful to other marine organisms, including fish. Holly A. Bowers of the University of Kalmar in Sweden has studied the DNA of phytoplankton in order to identify and quantify different types of harmful phytoplankton species.

Her work is a key piece of the puzzle when it comes to understanding when and how harmful phytoplankton species, such as e.g. the "killer algae" become dominant and threaten to kill off fish.

Just like plants on land, phytoplankton is an important source of nutrition for other organisms and is responsible for the major part of the global primary production. Sometimes the phytoplankton toxins can be so potent that they can cause severe illness and even death in humans.

... more about:
»DNA »Phytoplankton »harmful

Authorities, administrators, and researchers are interested in methods that can rapidly locate harmful phytoplankton species. Since phytoplankton species are tiny, 1-100 thousandths of a mm, and several of them look similar, it is difficult to distinguish various species in a microscope. One way to get around this is to analyze their DNA.

"DNA is species-specific and is similar to a fingerprint, which makes it possible to distinguish between different species", says Holly A. Bowers.

One way to analyze DNA is through real-time PCR, where you dye the DNA of a single species with a fluorescent preparation. The light can then be measured, and more light means more cells of the species there are in the water sample.

Holly A. Bowers' doctoral thesis describes how real-time PCR has been adapted to quickly and reliably identify and estimate a number of harmful phytoplankton species quantities present in the water. The DNA tests that Holly A. Bowers developed for her thesis are now used in several places around the world, especially in the Chesapeake Bay, Maryland, U.S. The findings of the DNA tests have helped researchers, authorities, and administrators to understand the spread of harmful phytoplankton species. The part of the doctoral work carried out in the U.S. mainly focused on identifying harmful species as part of a state-sponsored monitoring program. In Kalmar, Sweden, the DNA tests were used to study the feeding behavior of a phytoplankton species responsible for fish kills in coastal waters around the world, including the Baltic outside Kalmar.

The external examiner was Professor Lisa Campbell, Texas A&M University, USA.

For more information:
Professor Edna Granéli; Tel: +46- 480 44 73 07; Mobil: +46-70 674 9415 ?
E-post: edna.graneli@hik.se
Pressofficer Karin Ekebjär; +46-709229 435; karin.ekebjar@hik.se

Karin Ekebjär | idw
Further information:
http://www.vr.se

Further reports about: DNA Phytoplankton harmful

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>