Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Build a Better DNA Molecule

27.05.2008
Scientists at the Weizmann Institute of Science demonstrate that a mathematical concept called recursion can be applied to constructing flawless synthetic DNA molecules. The ideal molecules are created in successive rounds in which faultless segments are lifted from longer, error-containing DNA strands and assembled anew.

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute's Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, using a mathematical concept called recursion. 'We all use recursion, intuitively, to compose and comprehend sentences like 'the dog that chases the cat that bit the mouse that ate the cheese that the man dropped is black,'' says Prof. Ehud Shapiro.

Recursion allows long DNA molecules to be composed hierarchically from smaller building blocks. But synthetic DNA building blocks have random errors within their sequence, as do the resulting molecules. Correcting these errors is necessary for the molecules to be useful. Even though the synthetic molecules are error prone, some of them are likely to have long stretches that do not contain any faults. These stretches of faultless DNA can be identified, extracted, and reused in another round of recursive construction. Starting from longer and more accurate building blocks in this round increases the chances of producing a flawless long DNA molecule.

The team, led by doctoral students Gregory Linshiz and Tuval Ben-Yehezkel under the supervision of Shapiro, found in their experiments that two rounds of recursive construction were enough to produce a flawless target DNA molecule. If need be, however, the error correction procedure could be repeated until the desired molecule is formed.

... more about:
»DNA »Shapiro »faultless »synthetic

The team's research, recently published in the journal Molecular Systems Biology, provides a novel way to construct faultless DNA molecules with greater speed, precision, and ease of combining synthetic and natural DNA fragments than existing methods. 'Synthetic DNA molecules are widely needed in bio-logical and biomedical research, and we hope that their efficient and accurate construction using this recursive process will help to speed up progress in these fields,' says Shapiro.

Prof. Ehud Shapiro's research is supported by the Clore Center for Biological Physics; the Arie and Ida Crown Memorial Charitable Fund; the Cymerman - Jakubskind Prize; the Fusfeld Research Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; the Henry Gutwirth Fund for Research; Ms. Sally Leafman Appelbaum, Scottsdale, AZ; the Carolito Stiftung, Switzerland; the Louis Chor Memorial Trust Fund; and the estate of Fannie Sherr, New York, NY. Prof. Shapiro is the incumbent of the Harry Weinrebe Chair of Computer Science and Biology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il,
http://www.eurekalert.org.

Further reports about: DNA Shapiro faultless synthetic

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>