Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Build a Better DNA Molecule

27.05.2008
Scientists at the Weizmann Institute of Science demonstrate that a mathematical concept called recursion can be applied to constructing flawless synthetic DNA molecules. The ideal molecules are created in successive rounds in which faultless segments are lifted from longer, error-containing DNA strands and assembled anew.

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute's Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, using a mathematical concept called recursion. 'We all use recursion, intuitively, to compose and comprehend sentences like 'the dog that chases the cat that bit the mouse that ate the cheese that the man dropped is black,'' says Prof. Ehud Shapiro.

Recursion allows long DNA molecules to be composed hierarchically from smaller building blocks. But synthetic DNA building blocks have random errors within their sequence, as do the resulting molecules. Correcting these errors is necessary for the molecules to be useful. Even though the synthetic molecules are error prone, some of them are likely to have long stretches that do not contain any faults. These stretches of faultless DNA can be identified, extracted, and reused in another round of recursive construction. Starting from longer and more accurate building blocks in this round increases the chances of producing a flawless long DNA molecule.

The team, led by doctoral students Gregory Linshiz and Tuval Ben-Yehezkel under the supervision of Shapiro, found in their experiments that two rounds of recursive construction were enough to produce a flawless target DNA molecule. If need be, however, the error correction procedure could be repeated until the desired molecule is formed.

... more about:
»DNA »Shapiro »faultless »synthetic

The team's research, recently published in the journal Molecular Systems Biology, provides a novel way to construct faultless DNA molecules with greater speed, precision, and ease of combining synthetic and natural DNA fragments than existing methods. 'Synthetic DNA molecules are widely needed in bio-logical and biomedical research, and we hope that their efficient and accurate construction using this recursive process will help to speed up progress in these fields,' says Shapiro.

Prof. Ehud Shapiro's research is supported by the Clore Center for Biological Physics; the Arie and Ida Crown Memorial Charitable Fund; the Cymerman - Jakubskind Prize; the Fusfeld Research Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; the Henry Gutwirth Fund for Research; Ms. Sally Leafman Appelbaum, Scottsdale, AZ; the Carolito Stiftung, Switzerland; the Louis Chor Memorial Trust Fund; and the estate of Fannie Sherr, New York, NY. Prof. Shapiro is the incumbent of the Harry Weinrebe Chair of Computer Science and Biology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il,
http://www.eurekalert.org.

Further reports about: DNA Shapiro faultless synthetic

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>