Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Produce the First Smell Map

27.05.2008
Scientists at the Weizmann Institute of Science have created a 'smell map' based on the chemical properties of odor molecules. This map, which can predict the neural response to an unfamiliar smell, supports the idea that universal laws governing smell are hard-wired into the brain.

Is the smell of almonds closer to that of roses or bananas? Weizmann Institute scientists have now answered that question (roses) by showing for the first time that smells can be mapped and the relative distance between various odors determined. Their findings, which appeared recently in Nature Methods, may help scientists to unravel the basic laws underlying our sense of smell, as well as potentially enabling odors to be digitized and transferred via computer in the future.

We know the musical note do is farther from la than from re on a scale - not only because our ears tell us the distance is greater, but because their frequencies are farther apart. No such physical relationship had been discovered for smells, in part because odor molecules are much more difficult to pin down than sound frequencies.

To create their map, the scientists began with 250 odorants and generated, for each, a list of around 1,600 chemical characteristics. From this dataset, the researchers, led by Rafi Haddad, a graduate student with Prof. Noam Sobel in the Neurobiology Department, and Prof. David Harel of the Computer Science and Applied Mathematics Department, together with their colleague Rehan Khan, created a multidimensional map of smells that revealed the distance between one odor molecule and another.

... more about:
»Molecule »laws »neural »odor

Eventually, they pared the list of traits needed to situate an odor on the map down to around 40. They then checked to see whether the brain recognizes this map, similar to the way it recognizes musical scales. They reexamined numerous previously published studies that measured the neural response patterns to smells in a variety of lab animals - from fruit flies to rats - and found that across all the species, the closer any two smells were on the map, the more similar the neural patterns. The scientists also tested 70 new odors by predicting the neural patterns they would arouse and running comparisons with the unpublished results of olfaction experiments done at the University of Tokyo. They found that their predictions closely matched the experimental results.

These findings lend support to the scientist's theory that, contrary to the commonly held view that smell is a subjective experience, there are universal laws governing the organization of smells, and these laws determine how our brains perceive them.

Prof. Noam Sobel's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the J&R Foundation; and the Eisenberg Keefer Fund for New Scientists.

Prof. David Harel's research is supported by the Arthur and Rochelle Belfer Institute of Mathematics and Computer Science; and the Henri Gutwirth Fund for Research. Prof. Harel is the incumbent of the William Sussman Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il
http://www.eurekalert.org.
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5129

Further reports about: Molecule laws neural odor

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>