Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Produce the First Smell Map

27.05.2008
Scientists at the Weizmann Institute of Science have created a 'smell map' based on the chemical properties of odor molecules. This map, which can predict the neural response to an unfamiliar smell, supports the idea that universal laws governing smell are hard-wired into the brain.

Is the smell of almonds closer to that of roses or bananas? Weizmann Institute scientists have now answered that question (roses) by showing for the first time that smells can be mapped and the relative distance between various odors determined. Their findings, which appeared recently in Nature Methods, may help scientists to unravel the basic laws underlying our sense of smell, as well as potentially enabling odors to be digitized and transferred via computer in the future.

We know the musical note do is farther from la than from re on a scale - not only because our ears tell us the distance is greater, but because their frequencies are farther apart. No such physical relationship had been discovered for smells, in part because odor molecules are much more difficult to pin down than sound frequencies.

To create their map, the scientists began with 250 odorants and generated, for each, a list of around 1,600 chemical characteristics. From this dataset, the researchers, led by Rafi Haddad, a graduate student with Prof. Noam Sobel in the Neurobiology Department, and Prof. David Harel of the Computer Science and Applied Mathematics Department, together with their colleague Rehan Khan, created a multidimensional map of smells that revealed the distance between one odor molecule and another.

... more about:
»Molecule »laws »neural »odor

Eventually, they pared the list of traits needed to situate an odor on the map down to around 40. They then checked to see whether the brain recognizes this map, similar to the way it recognizes musical scales. They reexamined numerous previously published studies that measured the neural response patterns to smells in a variety of lab animals - from fruit flies to rats - and found that across all the species, the closer any two smells were on the map, the more similar the neural patterns. The scientists also tested 70 new odors by predicting the neural patterns they would arouse and running comparisons with the unpublished results of olfaction experiments done at the University of Tokyo. They found that their predictions closely matched the experimental results.

These findings lend support to the scientist's theory that, contrary to the commonly held view that smell is a subjective experience, there are universal laws governing the organization of smells, and these laws determine how our brains perceive them.

Prof. Noam Sobel's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the J&R Foundation; and the Eisenberg Keefer Fund for New Scientists.

Prof. David Harel's research is supported by the Arthur and Rochelle Belfer Institute of Mathematics and Computer Science; and the Henri Gutwirth Fund for Research. Prof. Harel is the incumbent of the William Sussman Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il
http://www.eurekalert.org.
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5129

Further reports about: Molecule laws neural odor

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>