Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal the lifestyle evolution of wild marine bacteria

27.05.2008
Free-floating cells share resources with their attached relatives

Marine bacteria in the wild organize into professions or lifestyle groups that partition many resources rather than competing for them, so that microbes with one lifestyle, such as free-floating cells, flourish in proximity with closely related microbes that may spend life attached to zooplankton or algae.

This new information about microbial groups and the methodology behind it could change the way scientists approach the classification of microbes by making it possible to determine on a large scale, relatively speaking, the genetic basis for ecological niches. Microbes drive almost all chemical reactions in the ocean; it’s important to identify the specific professions held by different groups.

“This is the first method to accurately differentiate the ecological niche or profession among large groups of microbes in the ocean,” said Professor Martin Polz, a microbiologist in MIT’s Department of Civil and Environmental Engineering. He and colleague Professor Eric Alm, a computational biologist, published a paper describing their research in the May 23 issue of Science.

... more about:
»Genetic »Polz »bacteria »ecological »habitat »microbes »niche

The nature of reproduction in microbes makes it impossible to define populations based on the ability of individuals within a species to share genes, as we do with larger animals. It’s only by determining bacteria’s ecological niche that scientists can classify them into populations. But microbes don’t live in natural population groups when cultured in a lab. So scientists must catch bacteria in the wild, then examine them genetically to determine their lifestyle.

“Most methods in use either over or underestimate greatly the number of microbial populations in a sample, leading either to a confusing array of populations, or a few large, but extremely diverse groups,” said Polz. “Eric’s method takes genetic information and groups the microbes into genetically distinct populations based on their preference for different habitats. Although this sounds like a simple problem, it is exceedingly difficult with microbes, because we have no species concept that would allow us to identify the genetic structure expected for populations. Microbial habitats differ on such small scales that they are invisible to us.”

Polz and former graduate student Dana Hunt, now a postdoctoral researcher at the University of Hawaii, created a large and accurate genetic data set by isolating and identifying over 1,000 strains of vibrio bacteria from a sample of eight liters of seawater gathered near Plum Island, Mass., in the spring and fall. To achieve accuracy in their identification of strains, they selected a gene whose molecular clock—the rate at which a gene accumulates random mutations over time—was well-suited to the task.

“The trick in many ways is choosing a gene that has a molecular clock that ticks at the right rate,” said Polz. “In particular, if it’s too slow, you might lump organisms into a single group that you would actually like to differentiate. We chose a gene that accumulates mutations fairly fast and thus allowed us to differentiate closely related groups of individuals and map the ecological data we collected onto their family tree.”

Alm and graduate student Lawrence David wrote an algorithm to make a conservative estimate of the minimum number of different habitats occupied by the vibrios (whether they live on small or large particles and thrive in the cool or warm months, etc.). They then combined information about habitat with phylogeny (the evolutionary history of groups of genes), and apportioned the original strains into 25 distinct populations and mapped their habitats back to a common ancestor, showing when and how each group diverged from the ancestral lifestyle.

“What is really new about our approach is that we were able to combine both molecular data (DNA sequences) with ecological data in a single mathematical framework,” said Alm. “This allowed us to solve the inverse problem of taking samples of organisms from different environments and figuring out their underlying habitats. In essence, we modeled the evolution of a microbe’s lifestyle over millions of years.”

One splendid example of the difficulty of applying the term “species” to a single-celled creature: 17 of those 25 populations are called V. splendidus, a name that was previously assigned to them based on classical taxonomic techniques. Alm and Polz can see now that V. splendidus has differentiated into several ecological populations.

Alm and Polz believe they caught at least one of those V. splendidus populations in the act of switching from one ecological niche (thriving on zooplankton) toward a new niche (attaching to small organic particles). Of course, this process takes millions of years, so the current population of scientists may never know for certain.

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: Genetic Polz bacteria ecological habitat microbes niche

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>