Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fast does a stressed cell react?

27.05.2008
When subjected to stress, such as an alteration to its environment, a cell reacts more or less rapidly in order to ensure its survival. In yeast, this takes place through a series of reactions that are well-known, but whose dynamics had never been studied.

This has now been done by CNRS researcher Pascal Hersen (1) and the team led by Sharad Ramanathan at the Center for Systems Biology (Harvard University). Using a simple and innovative measuring device that they developed, the researchers have confirmed the hypothesis that above a certain stimulation frequency, the yeast cell no longer responds to osmotic stress (2).

They are now able to measure the rate of reaction to such stress, and above all, modify the reaction rate by eliminating certain genes. This work opens up new prospects for biological engineering. The idea is to construct cells with novel biological functions and whose dynamics can be controlled. These findings have been published on line on the web site of the journal /PNAS/.

Place a little salt on a cell and it immediately shrinks. This phenomenon is caused by the difference in salinity inside and outside the cell. To restore equilibrium between the concentrations, the cell releases some water, which reduces its size. In order to return to normal size, the cell undergoes a series of reactions that are essential for the efficient working of its regulation and adaptation processes. In the yeast Saccharomyces cerevisiae, a model eukaryotic (3) system, such a cascade has been well described. However, its dynamics remain poorly understood. A cell needs to react at the right rate in order to ensure its survival. It is therefore essential to understand the dynamics of cell response to environmental stress.

... more about:
»Dynamic »Membrane »reaction »yeast

To this end, Pascal Hersen, CNRS researcher at the Complex Systems and Matter Laboratory (CNRS / Université Paris 7), and his US colleagues decided to study how and at what rate yeast responds and adapts to environmental stress. Using a simple device that makes it possible to follow the behavior of individual cells, they created an environment which periodically brings about disequilibrium. In this way they were able to determine the dynamic properties of cell response.

Their first observation was that when the frequency is too high, the size of the cells doesn't change. There simply isn't enough time for the transfer of water through the cell membrane to take place. On the other hand, for lower frequencies (input of disequilibrium every 10 seconds), the cells shrink and swell periodically, faithfully following the fluctuations of the disequilibrium. However, in this range of frequencies, there isn't enough time for the cascade of reactions to be activated between two cycles. There is thus a decoupling between the mechanical response and the biological response. It is only when the period is more than around ten minutes that the biological reactions are activated and follow one another 'naturally', while at the same time being coupled to the mechanical response of the cell. This frequency is therefore characteristic of the response dynamics in yeast, which is unable to faithfully follow changes in its environment that are too rapid, i.e. a period of less than ten minutes.

Finally, by eliminating certain genes from the yeast, the researchers showed that this cascade can be significantly slowed down. They now hope to understand how the quantity and nature of the proteins affects the dynamics of these reactions, and how they might eventually be able to speed them up or slow them down. Being able to manipulate them in this way opens up new prospects in synthetic biology (4) for the design of cells with novel functions, whose dynamics of response to stress can be controlled.

(1) Unité Matière et systèmes complexes (MSC, CNRS / Université Paris 7).

(2) Osmotic stress is caused by a difference in concentration of solute (such as salt) on either side of the cell membrane. Osmosis is the name given to the phenomenon of a return to equilibrium by diffusion of water through the membrane.

(3) A living organism which has a nucleus separated from the cytoplasm by a membrane and containing DNA.

(4) Synthetic biology is the engineering of living organisms. It consists in synthesizing complex systems based on biology which carry out functions that don't exist in nature.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www.pnas.org/cgi/content/abstract/0710770105v1

Further reports about: Dynamic Membrane reaction yeast

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>