Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fast does a stressed cell react?

27.05.2008
When subjected to stress, such as an alteration to its environment, a cell reacts more or less rapidly in order to ensure its survival. In yeast, this takes place through a series of reactions that are well-known, but whose dynamics had never been studied.

This has now been done by CNRS researcher Pascal Hersen (1) and the team led by Sharad Ramanathan at the Center for Systems Biology (Harvard University). Using a simple and innovative measuring device that they developed, the researchers have confirmed the hypothesis that above a certain stimulation frequency, the yeast cell no longer responds to osmotic stress (2).

They are now able to measure the rate of reaction to such stress, and above all, modify the reaction rate by eliminating certain genes. This work opens up new prospects for biological engineering. The idea is to construct cells with novel biological functions and whose dynamics can be controlled. These findings have been published on line on the web site of the journal /PNAS/.

Place a little salt on a cell and it immediately shrinks. This phenomenon is caused by the difference in salinity inside and outside the cell. To restore equilibrium between the concentrations, the cell releases some water, which reduces its size. In order to return to normal size, the cell undergoes a series of reactions that are essential for the efficient working of its regulation and adaptation processes. In the yeast Saccharomyces cerevisiae, a model eukaryotic (3) system, such a cascade has been well described. However, its dynamics remain poorly understood. A cell needs to react at the right rate in order to ensure its survival. It is therefore essential to understand the dynamics of cell response to environmental stress.

... more about:
»Dynamic »Membrane »reaction »yeast

To this end, Pascal Hersen, CNRS researcher at the Complex Systems and Matter Laboratory (CNRS / Université Paris 7), and his US colleagues decided to study how and at what rate yeast responds and adapts to environmental stress. Using a simple device that makes it possible to follow the behavior of individual cells, they created an environment which periodically brings about disequilibrium. In this way they were able to determine the dynamic properties of cell response.

Their first observation was that when the frequency is too high, the size of the cells doesn't change. There simply isn't enough time for the transfer of water through the cell membrane to take place. On the other hand, for lower frequencies (input of disequilibrium every 10 seconds), the cells shrink and swell periodically, faithfully following the fluctuations of the disequilibrium. However, in this range of frequencies, there isn't enough time for the cascade of reactions to be activated between two cycles. There is thus a decoupling between the mechanical response and the biological response. It is only when the period is more than around ten minutes that the biological reactions are activated and follow one another 'naturally', while at the same time being coupled to the mechanical response of the cell. This frequency is therefore characteristic of the response dynamics in yeast, which is unable to faithfully follow changes in its environment that are too rapid, i.e. a period of less than ten minutes.

Finally, by eliminating certain genes from the yeast, the researchers showed that this cascade can be significantly slowed down. They now hope to understand how the quantity and nature of the proteins affects the dynamics of these reactions, and how they might eventually be able to speed them up or slow them down. Being able to manipulate them in this way opens up new prospects in synthetic biology (4) for the design of cells with novel functions, whose dynamics of response to stress can be controlled.

(1) Unité Matière et systèmes complexes (MSC, CNRS / Université Paris 7).

(2) Osmotic stress is caused by a difference in concentration of solute (such as salt) on either side of the cell membrane. Osmosis is the name given to the phenomenon of a return to equilibrium by diffusion of water through the membrane.

(3) A living organism which has a nucleus separated from the cytoplasm by a membrane and containing DNA.

(4) Synthetic biology is the engineering of living organisms. It consists in synthesizing complex systems based on biology which carry out functions that don't exist in nature.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www.pnas.org/cgi/content/abstract/0710770105v1

Further reports about: Dynamic Membrane reaction yeast

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>