Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super-sensitive spray-on explosive detector makes great television

US scientists have designed a new spray-on explosive detector sensitive enough to detect just a billionth of a gram of explosive. After treatment the explosive glows blue under UV light, making it perfect for use in the field – or on CSI: Miami.

William Trogler and his team at the University of California, San Diego, made a silafluorene-fluorene copolymer to identify nitrogen-containing explosives. It is the first of its kind to act as a switchable sensor with picogram (10-15g) detection limits, and is reported in the Royal Society of Chemistry’s Journal of Materials Chemistry.

Trogler's polymer can detect explosives at much lower levels than existing systems because it detects particles instead of explosive vapours. In the team’s new method one simply sprays the polymer solution over the test area, let it dry, and shine UV light on it. Spots of explosive quench the fluorescent polymer and turn blue – this makes it quick and visually exciting enough to be featured on the hit US TV programme CSI: Miami.

The polymer is able to show the difference between nitrate esters, such as trinitroglycerin, and nitroaromatic explosives, such as TNT.

... more about:
»Blue »LIGHT »Polymer

Initially, polymer-treated spots of both compounds appear blue under UV light, but after further exposure the trinitroglycerin spot fluoresces green-yellow whilst the TNT spot remains blue. This colour change is thought to be due to photooxidation of the fluorenyl groups of the polymer.

Trogler was surprised to find that adding a spirofluorene co-monomer gave the polymer a 100 per cent efficient conversion of UV light into fluorescence, describing this increase as dramatic. 'From a technology perspective, the most surprising thing was the ability to use photochemistry to attain a reasonably chemospecific turn-on sensor,' he says.

The technology is now being commercially produced by RedXDefense, a security company based in the US.

The team are currently working on a similar system to detect peroxide-based explosives and say they hope to be able to investigate perchlorates and organic nitrates too.

Jon Edwards | alfa
Further information:

Further reports about: Blue LIGHT Polymer

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>