Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone Cells Found to Influence Blood Stem Cell Replication and Migration

26.05.2008
Using a novel investigatory technique, researchers at the Joslin Diabetes Center have established that osteoblasts, cells responsible for bone formation, are also directly involved in the proliferation and expansion of blood-forming hematopoietic stem cells.

The finding, published online in May in the journal Blood, improves understanding of how such stem cells work and could have implications for the future of bone marrow and peripheral blood progenitor cell transplants, which are used in the treatment of a variety of illnesses – including leukemia, lymphoma and immunodeficiency.

The success of these transplants depends on the ability of intravenously infused blood-forming stem cells, which normally reside predominantly in the bone marrow, to accurately and efficiently migrate from the blood to the marrow of the transplant recipient and, once there, to repopulate their pool of mature blood cells.

“In normal individuals, blood-forming stem cells continually seed the production of all cells in the adult blood system. Appropriate regulation of stem cell activity is essential for maintaining this normal cell replacement, and for supporting repair of the blood system after injury,” said lead author Amy J. Wagers, Ph.D., Principal Investigator in the Joslin Section on Developmental and Stem Cell Biology, principal faculty member at the Harvard Stem Cell Institute and Assistant Professor of Stem Cell and Regenerative Biology at Harvard University.

The signals that regulate stem cells remain largely mysterious, but some have been proposed to emanate from specialized cells in the bone marrow environment which form a supportive “stem cell niche” to communicate physiologically relevant signals to stem cells.

A number of earlier studies had implicated bone-lining osteoblasts as important “niche cells.” However, these earlier studies were complicated by the presence of other cell types within the bone marrow. As a result, whether osteoblasts in particular could modulate blood-forming stem cell activity remained controversial.

To clarify this issue, Wagers and co-author Shane R. Mayack, Ph.D., Research Fellow in the Joslin Section on Development and Stem Cell Biology, developed a strategy to isolate osteoblasts and then exposed these osteoblasts to bone marrow stem and progenitor cells in vitro to test their ability to alter stem cell proliferation and function.

“The idea was to deconstruct the complexity of the marrow environment to find out whether osteoblasts alone were sufficient to regulate stem cell activity,” said Wagers.

In their experiment, the researchers took osteoblasts from normal mice and from mice treated with drugs designed to cause stem cells to proliferate and migrate – a process known as “mobilization.” They then exposed the isolated osteoblasts to bone marrow progenitor cells from normal mice in vitro.

The bone marrow cells exposed to the osteoblasts taken from the treated mice proliferated rapidly, while those from untreated mice were inhibited from replicating.

According to Wagers, this effect demonstrates that the osteoblast cells are capable of communicating to the stem cells the physiological signals provided by the drugs.

“It demonstrates that osteoblasts act as functional niche cells capable of directly regulating stem cell activity,” she said. “This work provides mechanistic insight into the common process of stem cell mobilization and makes available a new way to discover novel pathways that regulate the expansion of hematopoietic stem cells.”

“Additionally, this study establishes a new paradigm for examining more generally how ‘support cells’ in the body influence stem cell activity,” she said.

The new finding also provides an opportunity to study potential changes in niche cells that may contribute to diseases such as leukemia or bone marrow failure, said Wagers.

According to Wagers, future studies will seek to identify the molecular factors necessary for the communication between the osteoblasts and stem cells and to try and understand how changes in that communication system may play a role in the development of disease.

The work was supported in part by grants from the Smith Family Medical Foundation, Paul F. Glenn Laboratories, a Burroughs Wellcome Fund Career Award and the National Institutes of Health.

About Joslin Diabetes Center
Joslin Diabetes Center is the world’s largest diabetes clinic, diabetes research center and provider of diabetes education. Joslin is dedicated to ensuring people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure for the disease. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent nonprofit institution affiliated with Harvard Medical School. For more information on Joslin, call 1-800-JOSLIN-1 or visit http://www.joslin.org.

Kira Jastive | newswise
Further information:
http://www.joslin.org

Further reports about: Diabetes Osteoblast Stem Wagers blood blood-forming marrow transplant

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>