Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone Cells Found to Influence Blood Stem Cell Replication and Migration

26.05.2008
Using a novel investigatory technique, researchers at the Joslin Diabetes Center have established that osteoblasts, cells responsible for bone formation, are also directly involved in the proliferation and expansion of blood-forming hematopoietic stem cells.

The finding, published online in May in the journal Blood, improves understanding of how such stem cells work and could have implications for the future of bone marrow and peripheral blood progenitor cell transplants, which are used in the treatment of a variety of illnesses – including leukemia, lymphoma and immunodeficiency.

The success of these transplants depends on the ability of intravenously infused blood-forming stem cells, which normally reside predominantly in the bone marrow, to accurately and efficiently migrate from the blood to the marrow of the transplant recipient and, once there, to repopulate their pool of mature blood cells.

“In normal individuals, blood-forming stem cells continually seed the production of all cells in the adult blood system. Appropriate regulation of stem cell activity is essential for maintaining this normal cell replacement, and for supporting repair of the blood system after injury,” said lead author Amy J. Wagers, Ph.D., Principal Investigator in the Joslin Section on Developmental and Stem Cell Biology, principal faculty member at the Harvard Stem Cell Institute and Assistant Professor of Stem Cell and Regenerative Biology at Harvard University.

The signals that regulate stem cells remain largely mysterious, but some have been proposed to emanate from specialized cells in the bone marrow environment which form a supportive “stem cell niche” to communicate physiologically relevant signals to stem cells.

A number of earlier studies had implicated bone-lining osteoblasts as important “niche cells.” However, these earlier studies were complicated by the presence of other cell types within the bone marrow. As a result, whether osteoblasts in particular could modulate blood-forming stem cell activity remained controversial.

To clarify this issue, Wagers and co-author Shane R. Mayack, Ph.D., Research Fellow in the Joslin Section on Development and Stem Cell Biology, developed a strategy to isolate osteoblasts and then exposed these osteoblasts to bone marrow stem and progenitor cells in vitro to test their ability to alter stem cell proliferation and function.

“The idea was to deconstruct the complexity of the marrow environment to find out whether osteoblasts alone were sufficient to regulate stem cell activity,” said Wagers.

In their experiment, the researchers took osteoblasts from normal mice and from mice treated with drugs designed to cause stem cells to proliferate and migrate – a process known as “mobilization.” They then exposed the isolated osteoblasts to bone marrow progenitor cells from normal mice in vitro.

The bone marrow cells exposed to the osteoblasts taken from the treated mice proliferated rapidly, while those from untreated mice were inhibited from replicating.

According to Wagers, this effect demonstrates that the osteoblast cells are capable of communicating to the stem cells the physiological signals provided by the drugs.

“It demonstrates that osteoblasts act as functional niche cells capable of directly regulating stem cell activity,” she said. “This work provides mechanistic insight into the common process of stem cell mobilization and makes available a new way to discover novel pathways that regulate the expansion of hematopoietic stem cells.”

“Additionally, this study establishes a new paradigm for examining more generally how ‘support cells’ in the body influence stem cell activity,” she said.

The new finding also provides an opportunity to study potential changes in niche cells that may contribute to diseases such as leukemia or bone marrow failure, said Wagers.

According to Wagers, future studies will seek to identify the molecular factors necessary for the communication between the osteoblasts and stem cells and to try and understand how changes in that communication system may play a role in the development of disease.

The work was supported in part by grants from the Smith Family Medical Foundation, Paul F. Glenn Laboratories, a Burroughs Wellcome Fund Career Award and the National Institutes of Health.

About Joslin Diabetes Center
Joslin Diabetes Center is the world’s largest diabetes clinic, diabetes research center and provider of diabetes education. Joslin is dedicated to ensuring people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure for the disease. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent nonprofit institution affiliated with Harvard Medical School. For more information on Joslin, call 1-800-JOSLIN-1 or visit http://www.joslin.org.

Kira Jastive | newswise
Further information:
http://www.joslin.org

Further reports about: Diabetes Osteoblast Stem Wagers blood blood-forming marrow transplant

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>