Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back garden biodiversity

04.07.2002


The average back garden may contain twice as many species as have so far been identified on the whole planet, according to a study published today by British scientists.



But gardeners would need a microscope to observe the massive biodiversity, which exists almost entirely among micro-organisms in the soil.

Using new methods of analysis, Dr Tom Curtis, of the Department of Civil Engineering, Newcastle University, England, and colleagues, estimated that a tonne of soil could contain some four million separate species of bacteria.


This is surprisingly high, since only 1.75 million plant and animal species have so far been identified globally, although these tend to be the larger, observable species.

The new findings, published in the Proceedings of the National Academy of Sciences (PNAS) of the USA, may cause scientists to revise the lower estimates for global biodiversity, which had previously been put at anywhere between three million and 100 million species. It is generally accepted that it is impossible to identify all species, because micro-organisms are so many and so small.

Dr Curtis argues that studying the unseen biodiversity of bacteria is important because we cannot fully understand the way ecosystems work without this knowledge. For example, the way we manage soil affects the bacterial content, which in turn may affect productivity. This is not only important for farmers but for ecologists, such as those who manage rainforests.

Other applications of this knowledge may lead to better sewage treatment and pollution control, since bacteria are employed to break down human waste products and to destroy toxins as polluted water flows through wetlands.

Dr Curtis and colleagues based their findings on two key measurements of soil samples: the total number of bacteria present and the abundance of the commonest species. They devised a statistical technique, based on a branch of mathematics known as log-normal species abundance curves, to estimate the total number of species.

The method was then applied to other ecosystems, calculating that typical samples of ocean might contain 160 species per millilitre, and sewage systems contain surprisingly fewer, only 70 species per millilitre.
According to the calculations, the entire ocean may contain about two million species, while a tonne of soil could contain double that number.


1. "Estimating prokaryotic diversity and its limits" by Thomas P. Curtis, Jack W. Scannell, and William T. Sloan will be published by PNAS on their website www.pnas.org and can also be obtained from Newcastle University press office

Professor Tom Curtis | alfa
Further information:
http://www.nrel.colostate.edu/IBOY/biomonth/resource.html
http://www.nrel.colostate.edu/IBOY/whatandwhere.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>