Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back garden biodiversity

04.07.2002


The average back garden may contain twice as many species as have so far been identified on the whole planet, according to a study published today by British scientists.



But gardeners would need a microscope to observe the massive biodiversity, which exists almost entirely among micro-organisms in the soil.

Using new methods of analysis, Dr Tom Curtis, of the Department of Civil Engineering, Newcastle University, England, and colleagues, estimated that a tonne of soil could contain some four million separate species of bacteria.


This is surprisingly high, since only 1.75 million plant and animal species have so far been identified globally, although these tend to be the larger, observable species.

The new findings, published in the Proceedings of the National Academy of Sciences (PNAS) of the USA, may cause scientists to revise the lower estimates for global biodiversity, which had previously been put at anywhere between three million and 100 million species. It is generally accepted that it is impossible to identify all species, because micro-organisms are so many and so small.

Dr Curtis argues that studying the unseen biodiversity of bacteria is important because we cannot fully understand the way ecosystems work without this knowledge. For example, the way we manage soil affects the bacterial content, which in turn may affect productivity. This is not only important for farmers but for ecologists, such as those who manage rainforests.

Other applications of this knowledge may lead to better sewage treatment and pollution control, since bacteria are employed to break down human waste products and to destroy toxins as polluted water flows through wetlands.

Dr Curtis and colleagues based their findings on two key measurements of soil samples: the total number of bacteria present and the abundance of the commonest species. They devised a statistical technique, based on a branch of mathematics known as log-normal species abundance curves, to estimate the total number of species.

The method was then applied to other ecosystems, calculating that typical samples of ocean might contain 160 species per millilitre, and sewage systems contain surprisingly fewer, only 70 species per millilitre.
According to the calculations, the entire ocean may contain about two million species, while a tonne of soil could contain double that number.


1. "Estimating prokaryotic diversity and its limits" by Thomas P. Curtis, Jack W. Scannell, and William T. Sloan will be published by PNAS on their website www.pnas.org and can also be obtained from Newcastle University press office

Professor Tom Curtis | alfa
Further information:
http://www.nrel.colostate.edu/IBOY/biomonth/resource.html
http://www.nrel.colostate.edu/IBOY/whatandwhere.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>