Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tracing biobanks: EU researchers propose identifying DNA collections similar to books

In a paper published in the Journal of the American Medical Associations (JAMA) this week, European scientists propose applying a structured numeric identifier to studies involving human biological samples collected for DNA. This would allow optimised use of biological resources through increased traceability and open new perspectives for genetics studies.

Tracing biological collections, or biobanks, is crucial for genetic studies of all diseases, since using larger and larger collections is becoming the gold standard of new genetics study designs. Networking between research teams is essential but also raises numerous ethical issues for the scientists who collect and analyse the samples, as well as for the individuals who take part in clinical trials.

In their publication, scientists from several EU projects, including GA²LEN, propose a new identification system that could be applied to all studies, based on the model of the International Standard Book Number (ISBN) which has been used for books for more than forty years. Each study would receive a modular number with a universal structure, to be registered at the time of ethical approval. Such a number could be applied retroactively to existing studies and collections.

The number would have a variable length and would include elements needed to identify the study: a number for the country, a number for the name of the institution acting as custodian to the collection and a number for the collection itself. This system is transparent but also flexible: elements of a study could be identified as well, for example the various surveys in a longitudinal study. Each collection will receive its unique “identity card” that can be referenced in any study using the collection.

... more about:
»Biobank »Genetic »propose

The immediate advantages of a universal number would be to accelerate and stimulate exchanges between scientists, and potentially increase the size of data collections which were analysed for a given research question. The reference number would optimise the literature search and reviews. Moreover, it would allow scientists to link studies with their samples, the methods used, the results, and various scientific publications.

Genome Wide Associations (GWA) studies or meta-analyses often include data of large biobanks studies. A universal number would facilitate this process and enable the next step: to find, trace and include data of smaller studies with better characterised phenotypes and environments in the large studies. This could also include studies from other medical disciplines or collections initially gathered to study other diseases. Critical mass would be reached for statistical analysis without losing details of the disease characterisation.

Finally, this simple system could benefit all actors involved in the human biobank. Scientists could be identified in relation to a study and given credit for their methods and results in future studies using their collections Institutes who funded the study and/or who are custodian of the collection could be identified from the numeric identifier. Individuals and patients involved in the study with their informed consent would be given transparent access to the way the collection they contributed to has been used, while anonymity is preserved.

The proposal was discussed within the several EU-funded projects that supported the work, including GA²LEN, the Global Allergy and Asthma European Network, Genetic Work Package, and three projects focusing on biobanks and/or genetic databases: PHOEBE, Promoting Harmonization of Epidemiological Biobanks, GEN2PHEN, Genotype-to-Phenotype Databases and newly launched BBMRI, a Pan-European Biobanking and Biomolecular Resources Research infrastructure.

Noélie Auvergne | alfa
Further information:

Further reports about: Biobank Genetic propose

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>