Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracing biobanks: EU researchers propose identifying DNA collections similar to books

23.05.2008
In a paper published in the Journal of the American Medical Associations (JAMA) this week, European scientists propose applying a structured numeric identifier to studies involving human biological samples collected for DNA. This would allow optimised use of biological resources through increased traceability and open new perspectives for genetics studies.

Tracing biological collections, or biobanks, is crucial for genetic studies of all diseases, since using larger and larger collections is becoming the gold standard of new genetics study designs. Networking between research teams is essential but also raises numerous ethical issues for the scientists who collect and analyse the samples, as well as for the individuals who take part in clinical trials.

In their publication, scientists from several EU projects, including GA²LEN, propose a new identification system that could be applied to all studies, based on the model of the International Standard Book Number (ISBN) which has been used for books for more than forty years. Each study would receive a modular number with a universal structure, to be registered at the time of ethical approval. Such a number could be applied retroactively to existing studies and collections.

The number would have a variable length and would include elements needed to identify the study: a number for the country, a number for the name of the institution acting as custodian to the collection and a number for the collection itself. This system is transparent but also flexible: elements of a study could be identified as well, for example the various surveys in a longitudinal study. Each collection will receive its unique “identity card” that can be referenced in any study using the collection.

... more about:
»Biobank »Genetic »propose

The immediate advantages of a universal number would be to accelerate and stimulate exchanges between scientists, and potentially increase the size of data collections which were analysed for a given research question. The reference number would optimise the literature search and reviews. Moreover, it would allow scientists to link studies with their samples, the methods used, the results, and various scientific publications.

Genome Wide Associations (GWA) studies or meta-analyses often include data of large biobanks studies. A universal number would facilitate this process and enable the next step: to find, trace and include data of smaller studies with better characterised phenotypes and environments in the large studies. This could also include studies from other medical disciplines or collections initially gathered to study other diseases. Critical mass would be reached for statistical analysis without losing details of the disease characterisation.

Finally, this simple system could benefit all actors involved in the human biobank. Scientists could be identified in relation to a study and given credit for their methods and results in future studies using their collections Institutes who funded the study and/or who are custodian of the collection could be identified from the numeric identifier. Individuals and patients involved in the study with their informed consent would be given transparent access to the way the collection they contributed to has been used, while anonymity is preserved.

The proposal was discussed within the several EU-funded projects that supported the work, including GA²LEN, the Global Allergy and Asthma European Network, Genetic Work Package, and three projects focusing on biobanks and/or genetic databases: PHOEBE, Promoting Harmonization of Epidemiological Biobanks, GEN2PHEN, Genotype-to-Phenotype Databases and newly launched BBMRI, a Pan-European Biobanking and Biomolecular Resources Research infrastructure.

Noélie Auvergne | alfa
Further information:
http://www.ga2len.net
http://www.gen2phen.org

Further reports about: Biobank Genetic propose

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>