Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biological Classification of Ovarian Cancer – A Possibility for Better Survival

23.05.2008
A thesis from The Sahlgrenska Academy in Sweden shows that it might be possible to predict with great probability which women with ovarian cancer will survive the disease before painful treatment with antineoplastic agents. A better prognosis would considerably improve the quality of life of patients since the treatment could be made more effective and thereby result in fewer side effects.

”By looking at biological events we have found differences that in future could be used as markers to make a more secure prognosis for women with ovarian cancer”, says biologist Karolina Partheen, who has written the thesis.

Ovarian cancer is an unusual disease in Sweden. But despite few persons being afflicted by it, it is the fifth most common cause of women dying of cancer in our country. When tumors are discovered there are a number of factors that influence what type of treatment the patient will undergo. Patients with a similar prognosis can have completely different experiences. This is a big problem within cancer care today, in the treatment of ovarian cancer and in the treatment of other forms of cancer too. The majority of patients undergo insufficient treatment resulting in serious side effects, which represents a big cost for both patients and healthcare.

”In the long run only half of all patients with ovarian cancer respond to the medication they are subjected to. What causes the difference in the way patients respond to antineoplastic agents is not completely clear today, but an underlying cause could be that the tumors have different biological characteristics”, says Karolina Partheen.

... more about:
»Partheen »Protein »ovarian »prognosis »thesis »tumors

Cancer is caused by something changing in our gene pool, our genes, which make the body’s own cells start dividing uncontrollably. Genes are copied to mRNA that later function as templates from which proteins can be built in a cell. Certain proteins speed up the cell’s division time, while others put the brakes on it. So if there is too much or too little of some protein, or if it becomes wrongly constructed, this can lead to cancer.

In her thesis, Karolina Partheen has measured gene copies and how much mRNA or protein has built in different tumors that have the same prognosis. This is done in order to then compare whether there are any differences between tumors from patients who survive or die from the disease.

”One of the most interesting discoveries in the thesis was a profile that seems to be able to distinguish a particular group of patients where everyone survives. In future, if these patients can be detected before treatment with antineoplastic agents, they would be able to get an alternative treatment that results in fewer side effects. Patients that do not correspond to our profile can receive standard treatment with some further medication from the start and tighter follow-ups. In this way the treatment becomes more effective, and side effects are minimised, as well as costs reduced for any over-treatment of patients”, says Karolina Partheen.

Ulrika Lundin | alfa
Further information:
http://hdl.handle.net/2077/10126
http://www.sahlgrenska.gu.se

Further reports about: Partheen Protein ovarian prognosis thesis tumors

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>