Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biological Classification of Ovarian Cancer – A Possibility for Better Survival

23.05.2008
A thesis from The Sahlgrenska Academy in Sweden shows that it might be possible to predict with great probability which women with ovarian cancer will survive the disease before painful treatment with antineoplastic agents. A better prognosis would considerably improve the quality of life of patients since the treatment could be made more effective and thereby result in fewer side effects.

”By looking at biological events we have found differences that in future could be used as markers to make a more secure prognosis for women with ovarian cancer”, says biologist Karolina Partheen, who has written the thesis.

Ovarian cancer is an unusual disease in Sweden. But despite few persons being afflicted by it, it is the fifth most common cause of women dying of cancer in our country. When tumors are discovered there are a number of factors that influence what type of treatment the patient will undergo. Patients with a similar prognosis can have completely different experiences. This is a big problem within cancer care today, in the treatment of ovarian cancer and in the treatment of other forms of cancer too. The majority of patients undergo insufficient treatment resulting in serious side effects, which represents a big cost for both patients and healthcare.

”In the long run only half of all patients with ovarian cancer respond to the medication they are subjected to. What causes the difference in the way patients respond to antineoplastic agents is not completely clear today, but an underlying cause could be that the tumors have different biological characteristics”, says Karolina Partheen.

... more about:
»Partheen »Protein »ovarian »prognosis »thesis »tumors

Cancer is caused by something changing in our gene pool, our genes, which make the body’s own cells start dividing uncontrollably. Genes are copied to mRNA that later function as templates from which proteins can be built in a cell. Certain proteins speed up the cell’s division time, while others put the brakes on it. So if there is too much or too little of some protein, or if it becomes wrongly constructed, this can lead to cancer.

In her thesis, Karolina Partheen has measured gene copies and how much mRNA or protein has built in different tumors that have the same prognosis. This is done in order to then compare whether there are any differences between tumors from patients who survive or die from the disease.

”One of the most interesting discoveries in the thesis was a profile that seems to be able to distinguish a particular group of patients where everyone survives. In future, if these patients can be detected before treatment with antineoplastic agents, they would be able to get an alternative treatment that results in fewer side effects. Patients that do not correspond to our profile can receive standard treatment with some further medication from the start and tighter follow-ups. In this way the treatment becomes more effective, and side effects are minimised, as well as costs reduced for any over-treatment of patients”, says Karolina Partheen.

Ulrika Lundin | alfa
Further information:
http://hdl.handle.net/2077/10126
http://www.sahlgrenska.gu.se

Further reports about: Partheen Protein ovarian prognosis thesis tumors

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>