Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biological Classification of Ovarian Cancer – A Possibility for Better Survival

23.05.2008
A thesis from The Sahlgrenska Academy in Sweden shows that it might be possible to predict with great probability which women with ovarian cancer will survive the disease before painful treatment with antineoplastic agents. A better prognosis would considerably improve the quality of life of patients since the treatment could be made more effective and thereby result in fewer side effects.

”By looking at biological events we have found differences that in future could be used as markers to make a more secure prognosis for women with ovarian cancer”, says biologist Karolina Partheen, who has written the thesis.

Ovarian cancer is an unusual disease in Sweden. But despite few persons being afflicted by it, it is the fifth most common cause of women dying of cancer in our country. When tumors are discovered there are a number of factors that influence what type of treatment the patient will undergo. Patients with a similar prognosis can have completely different experiences. This is a big problem within cancer care today, in the treatment of ovarian cancer and in the treatment of other forms of cancer too. The majority of patients undergo insufficient treatment resulting in serious side effects, which represents a big cost for both patients and healthcare.

”In the long run only half of all patients with ovarian cancer respond to the medication they are subjected to. What causes the difference in the way patients respond to antineoplastic agents is not completely clear today, but an underlying cause could be that the tumors have different biological characteristics”, says Karolina Partheen.

... more about:
»Partheen »Protein »ovarian »prognosis »thesis »tumors

Cancer is caused by something changing in our gene pool, our genes, which make the body’s own cells start dividing uncontrollably. Genes are copied to mRNA that later function as templates from which proteins can be built in a cell. Certain proteins speed up the cell’s division time, while others put the brakes on it. So if there is too much or too little of some protein, or if it becomes wrongly constructed, this can lead to cancer.

In her thesis, Karolina Partheen has measured gene copies and how much mRNA or protein has built in different tumors that have the same prognosis. This is done in order to then compare whether there are any differences between tumors from patients who survive or die from the disease.

”One of the most interesting discoveries in the thesis was a profile that seems to be able to distinguish a particular group of patients where everyone survives. In future, if these patients can be detected before treatment with antineoplastic agents, they would be able to get an alternative treatment that results in fewer side effects. Patients that do not correspond to our profile can receive standard treatment with some further medication from the start and tighter follow-ups. In this way the treatment becomes more effective, and side effects are minimised, as well as costs reduced for any over-treatment of patients”, says Karolina Partheen.

Ulrika Lundin | alfa
Further information:
http://hdl.handle.net/2077/10126
http://www.sahlgrenska.gu.se

Further reports about: Partheen Protein ovarian prognosis thesis tumors

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>