Real-time observation of the DNA-repair mechanism

Insight into this type of repair mechanism is essential as errors in this process can lead to the development of cancerous cells. Researchers from the Kavli Institute of Nanoscience Delft are to publish an article on this in the leading scientific journal Molecular Cell.

Cells have mechanisms for repairing the continuous accidental damage occurring in DNA. These damages can vary from a change to a single part of the DNA to a total break in the DNA structure.

These breaks can, for instance, be caused by ultraviolet light or X-rays, but also occur during cell division, when DNA molecules split and form two new DNA molecules. If this type of break is not properly repaired it can be highly dangerous to the functioning of the cell and lead to the creation of a cancerous cell.

One major DNA-repair mechanism involved in repairing these breaks is known as homologous recombination. This mechanism has been observed for the first time by Delft University of Technology researchers in real time and at the level of a single DNA molecule.

To observe this, a DNA molecule is stretched between a magnetic bead and a glass surface. A force is exerted on the magnetic bead using a magnetic field, enabling researchers to pull and rotate a single DNA molecule in a controlled fashion. As the position of the bead changes when the DNA molecule is repaired, researchers are able to observe the repair process in detail.

Media Contact

Frank Nuijens alfa

More Information:

http://www.tudelft.nl

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors