Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive Evolution in Snake Proteins Could Give Insight into Human Metabolic Function and Physiology

23.05.2008
According to researchers at the University of Colorado Denver School of Medicine, new understanding about snake proteins could lead to understanding how other animals including humans accomplish aerobic respiration, and also contribute new insight into protein function and evolution important for human health.

Snakes have been previously proposed as an ideal model system to study evolution, and results from a current UC Denver School of Medicine study published in Public Library of Science (PLoS) ONE journal on May 21, support that idea, showing that their use as a model system can extend to the molecular level.

Over the last ten years, scientists have shown that snakes have remarkable abilities to regulate heart and digestive system development. They endure among the most extreme shifts in aerobic metabolism known in vertebrates. This has made snakes an excellent model for studying organ development, as well as physiological and metabolic regulation. However, the reasons that snakes are so unique had not previously been identified at the molecular level.

In the NIH-grant-funded study, David Pollock, PhD, associate professor of biochemistry and molecular genetics at the UC Denver School of Medicine, and his colleagues provide evidence that the major evolutionary changes that have occurred in snakes, such as adaptations for their extreme physiology and metabolic demands, loss of limbs and the evolution of deadly venoms, have been accompanied by massive functional redesign of core metabolic proteins.

Prior to the advent of large sequence datasets, the scientific community generally expected that innovation and divergence at the morphological and physiological level would be easily explained at the molecular level. However, molecular explanations for physiological adaptations have been rare. The UC Denver researchers show that some proteins in snakes have endured a remarkable process of evolutionary redesign that may explain why snakes have such special metabolism and physiology. Amino acids that are normally highly conserved in these proteins have been altered, affecting key molecular functions. In addition to an accelerated burst of amino acid replacements, evidence for adaptation comes from exceptional levels of molecular co-evolution and convergence at the functional core of these proteins.

“The molecular evolutionary results are remarkable, and set a new precedence for extreme protein evolutionary adaptive redesign. This represents the most dramatic burst of protein evolution in an otherwise highly conserved protein that I know of,” said Dr. David Pollock.

By integrating analyses of molecular evolution with protein structural data, the authors show that critical functions of mitochondrial proteins have been fundamentally altered during the evolution of snakes.

“We believe that our results will provide a textbook case as the most clear and dramatic example of adaptive evolution in a core metabolic protein to date, as well as providing the implication that strong molecular and physiological adaptation can be linked,” said Pollock. “The manuscript represents an important milestone in molecular evolution and vertebrate adaptation, and opens up clear and well-justified directions for further research. Many proteins that lie at the functional core of aerobic metabolism are difficult to study and we still know surprisingly little about them, despite much scientific effort. Snake metabolic proteins can increase our understanding of how these proteins function because they seem to break many of the rules, but apparently still work, and possibly work even better.”

Todd Castoe, PhD, UC Denver School of Medicine, and a lead author on the paper, said: “Snakes are an invaluable resource for evolutionary biologists, structural biologists and biochemists who can use comparative genomics to generate hypotheses for how proteins function, and how these functions may be altered and redesigned. From what we have seen so far, snakes may be the single best model system for studying extreme adaptive evolution in vertebrates.”

The full text of the paper is available at http://www.plosone.org/doi/pone.0002201.

The School of Medicine faculty work to advance science and improve care as the physicians, educators and scientists at University of Colorado Hospital, The Children’s Hospital, Denver Health, National Jewish Medical and Research Center, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is part of the University of Colorado Denver, one of three universities in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

Caitlin Jenney | newswise
Further information:
http://www.plosone.org/doi/pone.0002201
http://www.uchsc.edu

Further reports about: Adaptation Core Evolution Protein metabolic physiological vertebrate

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>