Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive Evolution in Snake Proteins Could Give Insight into Human Metabolic Function and Physiology

23.05.2008
According to researchers at the University of Colorado Denver School of Medicine, new understanding about snake proteins could lead to understanding how other animals including humans accomplish aerobic respiration, and also contribute new insight into protein function and evolution important for human health.

Snakes have been previously proposed as an ideal model system to study evolution, and results from a current UC Denver School of Medicine study published in Public Library of Science (PLoS) ONE journal on May 21, support that idea, showing that their use as a model system can extend to the molecular level.

Over the last ten years, scientists have shown that snakes have remarkable abilities to regulate heart and digestive system development. They endure among the most extreme shifts in aerobic metabolism known in vertebrates. This has made snakes an excellent model for studying organ development, as well as physiological and metabolic regulation. However, the reasons that snakes are so unique had not previously been identified at the molecular level.

In the NIH-grant-funded study, David Pollock, PhD, associate professor of biochemistry and molecular genetics at the UC Denver School of Medicine, and his colleagues provide evidence that the major evolutionary changes that have occurred in snakes, such as adaptations for their extreme physiology and metabolic demands, loss of limbs and the evolution of deadly venoms, have been accompanied by massive functional redesign of core metabolic proteins.

Prior to the advent of large sequence datasets, the scientific community generally expected that innovation and divergence at the morphological and physiological level would be easily explained at the molecular level. However, molecular explanations for physiological adaptations have been rare. The UC Denver researchers show that some proteins in snakes have endured a remarkable process of evolutionary redesign that may explain why snakes have such special metabolism and physiology. Amino acids that are normally highly conserved in these proteins have been altered, affecting key molecular functions. In addition to an accelerated burst of amino acid replacements, evidence for adaptation comes from exceptional levels of molecular co-evolution and convergence at the functional core of these proteins.

“The molecular evolutionary results are remarkable, and set a new precedence for extreme protein evolutionary adaptive redesign. This represents the most dramatic burst of protein evolution in an otherwise highly conserved protein that I know of,” said Dr. David Pollock.

By integrating analyses of molecular evolution with protein structural data, the authors show that critical functions of mitochondrial proteins have been fundamentally altered during the evolution of snakes.

“We believe that our results will provide a textbook case as the most clear and dramatic example of adaptive evolution in a core metabolic protein to date, as well as providing the implication that strong molecular and physiological adaptation can be linked,” said Pollock. “The manuscript represents an important milestone in molecular evolution and vertebrate adaptation, and opens up clear and well-justified directions for further research. Many proteins that lie at the functional core of aerobic metabolism are difficult to study and we still know surprisingly little about them, despite much scientific effort. Snake metabolic proteins can increase our understanding of how these proteins function because they seem to break many of the rules, but apparently still work, and possibly work even better.”

Todd Castoe, PhD, UC Denver School of Medicine, and a lead author on the paper, said: “Snakes are an invaluable resource for evolutionary biologists, structural biologists and biochemists who can use comparative genomics to generate hypotheses for how proteins function, and how these functions may be altered and redesigned. From what we have seen so far, snakes may be the single best model system for studying extreme adaptive evolution in vertebrates.”

The full text of the paper is available at http://www.plosone.org/doi/pone.0002201.

The School of Medicine faculty work to advance science and improve care as the physicians, educators and scientists at University of Colorado Hospital, The Children’s Hospital, Denver Health, National Jewish Medical and Research Center, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is part of the University of Colorado Denver, one of three universities in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

Caitlin Jenney | newswise
Further information:
http://www.plosone.org/doi/pone.0002201
http://www.uchsc.edu

Further reports about: Adaptation Core Evolution Protein metabolic physiological vertebrate

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>