Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Toxin Receptor Discovered For Ulcer-Causing Stomach Pathogen

23.05.2008
Helicobacter pylori is one tough bug. It can survive in the human stomach, a zone with a pH somewhere between that of lemon juice and battery acid. Now researchers have discovered how an H. pylori toxin gets into cells, a feat that helps the bacterium live in one of the most inhospitable environments in the body.

Their findings appear this week in PLoS Pathogens, a journal of the Public Library of Science.

About half of the world’s population is infected with H. pylori, although most of them don’t know it (most infected people have no obvious symptoms). For a percentage of the infected, however, the bacterium packs a nasty punch. H. pylori is responsible for most human cases of gastric and duodenal ulcers, and long-term infection is a significant risk factor for stomach cancer, the second leading cause of cancer death worldwide.

Researchers have tried for years to understand how the bacterium survives in the human stomach, said Steven Blanke, a University of Illinois professor in the department of microbiology and Institute for Genomic Biology and principal investigator on the study.

... more about:
»Lipid »Membrane »Molecule »Toxin »VacA »bind »pylori »receptor »sphingomyelin

“Paradoxically, although H. pylori is a common resident of the human stomach, the bug is not well adapted by itself to acid,” he said. “But this pathogen has several clever mechanisms for carving out a niche for itself in the stomach lining.”

A protein produced by H. pylori, called vacuolating toxin A (VacA), is an important weapon in its arsenal.

“This toxin gets into stomach epithelial cells and immune cells and changes their properties in such a way as to allow H. pylori to first gain a foothold in the stomach, and then survive over the long-term, which may be the entire lifetime of an individual,” Blanke said.

“H. pylori releases the VacA toxin in order to modify its environment,” he said.

How the toxin crossed the membrane to get into these cells was a mystery, however.

Cell membranes are composed primarily of lipids and proteins and are designed to keep things out. Some molecules can penetrate them, but most can do so only after binding to a specific membrane component, called a receptor. Receptors sometimes act as keys that open channels through a membrane, or they function as signaling molecules, communicating to other components in the cell.

Blanke’s team knew that VacA was latching on to something on the cell surface that was helping it across the membrane.

Other studies had shown that VacA bound to lipids within artificially created membranes, so graduate students Vijay Gupta and Hetal Patel screened a number of lipids for VacA binding and soon found one to which the toxin readily attached. This lipid, called sphingomyelin, is an important and abundant component of the membrane of some animal cells. (Foods such as milk, meat, fish and eggs are dietary sources of sphingomyelin.)

To be considered a receptor, a molecule must meet two criteria, Blanke said. It must bind the agent of interest (in this case VacA) to the cell surface, and it must “confer sensitivity” to that agent. In other words, a receptor to VacA must be essential to the process by which VacA gets into a cell. If you removed the receptor, or blocked it, the toxin would lose its ability to bind or function. Prior to this study, no molecules on the membrane of human cells had been found that satisfied both criteria as a receptor.

Upon entering cells, VacA spurs the formation of giant vacuoles. These oversized membrane-bound compartments are easy to spot under a microscope and provide a useful indicator of VacA activity in the cell.

To test whether sphingomyelin was a receptor for VacA, Gupta treated cultured human cells with an enzyme that depleted the membranes of sphingomyelin. In the sphingomyelin-depleted cells, the toxin lost its ability to cross into the cells and the giant vacuoles disappeared. When he restored sphingomyelin to the same cell membranes (again, in the presence of VacA), the vacuoles returned.

“This is the first example of a bacterial virulence factor that uses sphingomyelin as a receptor,” Blanke said. “Only sphingomyelin confers sensitivity to the toxin in these cells, whereas other common membrane lipids do not.”

Sphingomyelin recently was discovered to have the ability to cluster into specialized membrane islands, or rafts, that look like raised platforms on the cell surface.

Blanke’s team found that VacA preferentially binds to and enters the cell by means of these sphingomyelin rafts.

“Our model is that these platforms serve as the entry portals for the toxin into the cell,” Blanke said. “We think that sphingomyelin is important because it seems to cluster the toxin in these portals of entry. This seems to be absolutely essential for toxin activity.”

Finding the mechanism by which the toxin gets into cells is of great interest to those hoping to treat H. pylori infection, Blanke said.

“Identifying toxin receptors is important because they are outstanding targets for new drugs to block the action of toxins on human cells,” he said.

Also, because some bacterial toxins are so adept at breeching the membrane barrier to enter human cells, this work may also point the way to new strategies for sending protein-based pharmaceuticals into the cell, he said.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Lipid Membrane Molecule Toxin VacA bind pylori receptor sphingomyelin

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>