Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fungus that produces biofuels from plants

21.05.2008
The fungus Trichoderma reesei optimally breaks down plants into simple sugars, the basic components of ethanol. The fungus's genome has recently been sequenced by researchers from the Architecture et fonction des macromolécules biologiques laboratory (CNRS/Université de la Méditerranée and Universite de Provence), working together with an American team.

The results, published online on the Nature biotechnology (1) website, show that only a few genes are responsible for the fungus's enzymatic activity. They offer new avenues for the fabrication of second generation biofuels from plant waste.

The fungus Trichoderma reesei was discovered in the South Pacific during the Second World War, where it was damaging American military equipment and was defeating every attempt at protecting the equipment with cotton cloth. The fungus contains a number of enzymes, cellulases, with potent catalytic properties that break down plants. It is considered to be the world's most efficient fungus at breaking down the cellulose in plant walls into simple sugars, which it feeds on.

After fermentation, simple sugars can easily be transformed into biofuels such as ethanol. First generation agrofuels, made from grain or from beet, have certain limitations. Second generation biofuels, made from foresting and agricultural waste (tree cuttings, corn cobs, straw, etc.) do not have these limitations, as they complement pre-established agricultural activity, have a better CO2 balance, et don't interfere with the agro-alimentary cycle. To produce these second generation biofuels, industrialists are looking to develop fungus strains capable of producing a cocktail of cellulases and hemicellulases at a concentration of 50 g/l. Trichoderma reesei is the choice organism for most projects in this field.

... more about:
»Biofuels »Trichoderma »enzyme »fungus »reesei

Bernard Henrissat's glycogenomic team at the Architecture et fonction des macromolécules biologiques lab specializes in the study of enzymes which break down sugars (2). In order to learn more about the incredible enzymatic activity of Trichoderma reesei, they assayed its genome. Contrary to their expectations, they found that the fungus has only a small number of genes which code for cellulases (hemicellulases and pectinases), many fewer in fact than in usually found in fungi capable of breaking down plant walls. Moreover, the fungus has no or very little enzymatic activity allowing the digestion of specific components in the wall.

This was first interpreted as bad news, but the limitations of this model organism are now being seen as something positive. The fungus's enzyme cocktail lends itself to numerous genetic modifications, and researchers are looking into which other enzymes can be added to the fungus's gene sequence in order to make it even more efficient at producing bioethanol.

(1) http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
(2) The laboratory has set up a Carbohydrate-Active Enzymes (CAZy) database, http://www.cazy.org, which describes a large number of families of enzymes that create or destroy bonds between sugars.

Julien Guillaume | alfa
Further information:
http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
http://www.cnrs.fr/presse

Further reports about: Biofuels Trichoderma enzyme fungus reesei

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>