Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fungus that produces biofuels from plants

21.05.2008
The fungus Trichoderma reesei optimally breaks down plants into simple sugars, the basic components of ethanol. The fungus's genome has recently been sequenced by researchers from the Architecture et fonction des macromolécules biologiques laboratory (CNRS/Université de la Méditerranée and Universite de Provence), working together with an American team.

The results, published online on the Nature biotechnology (1) website, show that only a few genes are responsible for the fungus's enzymatic activity. They offer new avenues for the fabrication of second generation biofuels from plant waste.

The fungus Trichoderma reesei was discovered in the South Pacific during the Second World War, where it was damaging American military equipment and was defeating every attempt at protecting the equipment with cotton cloth. The fungus contains a number of enzymes, cellulases, with potent catalytic properties that break down plants. It is considered to be the world's most efficient fungus at breaking down the cellulose in plant walls into simple sugars, which it feeds on.

After fermentation, simple sugars can easily be transformed into biofuels such as ethanol. First generation agrofuels, made from grain or from beet, have certain limitations. Second generation biofuels, made from foresting and agricultural waste (tree cuttings, corn cobs, straw, etc.) do not have these limitations, as they complement pre-established agricultural activity, have a better CO2 balance, et don't interfere with the agro-alimentary cycle. To produce these second generation biofuels, industrialists are looking to develop fungus strains capable of producing a cocktail of cellulases and hemicellulases at a concentration of 50 g/l. Trichoderma reesei is the choice organism for most projects in this field.

... more about:
»Biofuels »Trichoderma »enzyme »fungus »reesei

Bernard Henrissat's glycogenomic team at the Architecture et fonction des macromolécules biologiques lab specializes in the study of enzymes which break down sugars (2). In order to learn more about the incredible enzymatic activity of Trichoderma reesei, they assayed its genome. Contrary to their expectations, they found that the fungus has only a small number of genes which code for cellulases (hemicellulases and pectinases), many fewer in fact than in usually found in fungi capable of breaking down plant walls. Moreover, the fungus has no or very little enzymatic activity allowing the digestion of specific components in the wall.

This was first interpreted as bad news, but the limitations of this model organism are now being seen as something positive. The fungus's enzyme cocktail lends itself to numerous genetic modifications, and researchers are looking into which other enzymes can be added to the fungus's gene sequence in order to make it even more efficient at producing bioethanol.

(1) http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
(2) The laboratory has set up a Carbohydrate-Active Enzymes (CAZy) database, http://www.cazy.org, which describes a large number of families of enzymes that create or destroy bonds between sugars.

Julien Guillaume | alfa
Further information:
http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
http://www.cnrs.fr/presse

Further reports about: Biofuels Trichoderma enzyme fungus reesei

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>