Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonic Beetle: Crystals for Future Optical Computers

21.05.2008
Researchers have been unable to build an ideal “photonic crystal” to manipulate visible light, impeding the dream of ultrafast optical computers. But now, University of Utah chemists have discovered that nature already has designed photonic crystals with the ideal, diamond-like structure: They are found in the shimmering, iridescent green scales of a beetle from Brazil.

“It appears that a simple creature like a beetle provides us with one of the technologically most sought-after structures for the next generation of computing,” says study leader Michael Bartl, an assistant professor of chemistry and adjunct assistant professor of physics at the University of Utah. “Nature has simple ways of making structures and materials that are still unobtainable with our million-dollar instruments and engineering strategies.”

The study by Bartl, University of Utah chemistry doctoral student Jeremy Galusha and colleagues is set to be published later this week in the journal Physical Review E.

The beetle is an inch-long weevil named Lamprocyphus augustus. The discovery of its scales’ crystal structure represents the first time scientists have been able to work with a material with the ideal or “champion” architecture for a photonic crystal.

“Nature uses very simple strategies to design structures to manipulate light – structures that are beyond the reach of our current abilities,” Galusha says.

Bartl and Galusha now are trying to design a synthetic version of the beetle’s photonic crystals, using scale material as a mold to make the crystals from a transparent semiconductor.

The scales can’t be used in technological devices because they are made of fingernail-like chitin, which is not stable enough for long-term use, is not semiconducting and doesn’t bend light adequately.

The University of Utah chemists conducted the study with coauthors Lauren Richey, a former Springville High School student now attending Brigham Young University; BYU biology Professor John Gardner; and Jennifer Cha, of IBM’s Almaden Research Center in San Jose, Calif.

Quest for the Ideal or ‘Champion’ Photonic Crystal

Researchers are seeking photonic crystals as they aim to develop optical computers that run on light (photons) instead of electricity (electrons). Right now, light in near-infrared and visible wavelengths can carry data and communications through fiberoptic cables, but the data must be converted from light back to electricity before being processed in a computer.

The goal – still years away – is an ultrahigh-speed computer with optical integrated circuits or chips that run on light instead of electricity.

“You would be able to solve certain problems that we are not able to solve now,” Bartl says. “For certain problems, an optical computer could do in seconds what regular computers need years for.”

Researchers also are seeking ideal photonic crystals to amplify light and thus make solar cells more efficient, to capture light that would catalyze chemical reactions, and to generate tiny laser beams that would serve as light sources on optical chips.

“Photonic crystals are a new type of optical materials that manipulate light in non-classic ways,” Bartl says. Some colors of light can pass through a photonic crystal at various speeds, while other wavelengths are reflected as the crystal acts like a mirror.

Bartl says there are many proposals for how light could be manipulated and controlled in new ways by photonic crystals, “however we still lack the proper materials that would allow us to create ideal photonic crystals to manipulate visible light. A material like this doesn’t exist artificially or synthetically.”

The ideal photonic crystal – dubbed the “champion” crystal – was described by scientists elsewhere in 1990. They showed that the optimal photonic crystal – one that could manipulate light most efficiently – would have the same crystal structure as the lattice of carbon atoms in diamond. Diamonds cannot be used as photonic crystals because their atoms are packed too tightly together to manipulate visible light.

When made from an appropriate material, a diamond-like structure would create a large “photonic bandgap,” meaning the crystalline structure prevents the propagation of light of a certain range of wavelengths. Materials with such bandgaps are necessary if researchers are to engineer optical circuits that can manipulate visible light.

On the Path of the Beetle: From BYU to Belgium and Brazil

The new study has its roots in Richey’s science fair project on iridescence in biology when she was a student at Utah’s Springville High School. Gardner’s group at BYU was helping her at the same time Galusha was using an electron microscope there and learned of Richey’s project.

Richey wanted to examine an iridescent beetle, but lacked a complete specimen. So the researchers ordered Brazil’s Lamprocyphus augustus from a Belgian insect dealer.

The beetle’s shiny, sparkling green color is produced by the crystal structure of its scales, not by any pigment, Bartl says. The scales are made of chitin, which forms the external skeleton, or exoskeleton, of most insects and is similar to fingernail material. The scales are affixed to the beetle’s exoskeleton. Each measures 200 microns (millionths of a meter) long by 100 microns wide. A human hair is about 100 microns thick.

Green light – which has a wavelength of about 500 to 550 nanometers, or billionths of a meter – cannot penetrate the scales’ crystal structure, which acts like mirrors to reflect the green light, making the beetle appear iridescent green.

Bartl says the beetle was interesting because it was iridescent regardless of the angle from which it was viewed – unlike most iridescent objects – and because a preliminary electron microscope examination showed its scales did not have the structure typical of artificial photonic crystals.

“The color and structure looked interesting,” Bartl says. “The question was: What was the exact three-dimensional structure that produces these unique optical properties?”

The Utah team’s study is the first to show that “just as atoms are arranged in diamond crystals, so is the chitin structure of beetle scales,” he says.

Galusha determined the 3-D structure of the scales using a scanning electron microscope. He cut a cross section of a scale, and then took an electron microscope image of it. Then he used a focused ion beam – sort of a tiny sandblaster that shoots a beam of gallium ions – to shave off the exposed end of the scale, and then took another image, doing so repeatedly until he had images of 150 cross-sections from the same scale.

Then the researchers “stacked” the images together in a computer, and determined the crystal structure of the scale material: a diamond-like or “champion” architecture, but with building blocks of chitin and air instead of the carbon atoms in diamond.

Next, Galusha and Bartl used optical studies and theory to predict optical properties of the scales’ structure. The prediction matched reality: green iridescence.

Many iridescent objects appear that way only when viewed at certain angles, but the beetle remains iridescent from any angle. Bartl says the way the beetle does that is an “ingenious engineering strategy” that approximates a technology for controlling the propagation of visible light.

A single beetle scale is not a continuous crystal, but includes some 200 pieces of chitin, each with the diamond-based crystal structure but each oriented a different direction. So each piece reflects a slightly different wavelength or shade of green.

“Each piece is too small to be seen individually by your eye, so what you see is a composite effect,” with the beetle appearing green from any angle, Bartl explains.

Scientists don’t know how the beetle uses its color, but “because it is an unnatural green, it’s likely not for camouflage,” Bartl says. “It could be to attract mates.”

The study was funded by the National Science Foundation, American Chemical Society, the University of Utah and Brigham Young University.

Contacts:
-- Michael Bartl, assistant professor of chemistry – cellular (801) 450-4245, office (801) 585-1120, bartl@chem.utah.edu (Bartl available only by cell until May 21.)

-- Jeremy Galusha, doctoral student in chemistry – cellular (936) 661-7714, office (801) 585-5160, jgalusha@chem.utah.edu (Galusha available only by cell until May 21.)

Lee Siegel | newswise
Further information:
http://www.chem.utah.edu

Further reports about: Atoms Cell Chitin Electron Galusha Ion Optical Photonic angle iridescent manipulate scale structure wavelength

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>