Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first discovery -- genes from extinct Tasmanian tiger function in a mouse

20.05.2008
Researchers from the University of Melbourne, Australia, and the University of Texas, USA, have extracted genes from the extinct Tasmanian tiger (thylacine), inserted it into a mouse and observed a biological function – this is a world first for the use of the DNA of an extinct species to induce a functional response in another living organism.

The results, published in the international scientific journal PLoS ONE this week, showed that the thylacine Col2a1 gene has a similar function in developing cartilage and bone development as the Col2a1 gene does in the mouse.

“This is the first time that DNA from an extinct species has been used to induce a functional response in another living organism,” said Dr Andrew Pask, RD Wright Fellow at the University of Melbourne’s Department of Zoology who led the research.

“As more and more species of animals become extinct, we are continuing to lose critical knowledge of gene function and their potential.”

... more about:
»DNA »Tasmanian »extinct »function »species

“Up until now we have only been able to examine gene sequences from extinct animals. This research was developed to go one step further to examine extinct gene function in a whole organism,” he said.

“This research has enormous potential for many applications including the development of new biomedicines and gaining a better understanding of the biology of extinct animals,” said Professor Richard Behringer, Deputy Head of the Department of Molecular Genetics, M.D. Anderson Cancer Center, at the University of Texas, who is the corresponding author on the paper.

The last known Tasmanian tiger died in captivity in the Hobart Zoo in 1936. This enigmatic marsupial carnivore was hunted to extinction in the wild in the early 1900s.

Researchers say fortunately some thylacine pouch young and adult tissues were preserved in alcohol in several museum collections around the world.

The research team used thylacine specimens from Museum Victoria in Melbourne Australia to examine how the thylacine genome functioned.

The research team isolated DNA from 100 year old ethanol fixed specimens. After authenticating this DNA as truly thylacine, it was inserted into mouse embryos and its function examined.

The thylacine DNA was resurrected, showing a function in the developing mouse cartilage, which will later form the bone.

“At a time when extinction rates are increasing at an alarming rate, especially of mammals, this research discovery is critical,” says Professor Marilyn Renfree, Federation Fellow and Laureate Professor in the University of Melbourne’s Department of Zoology, the senior author on the paper.

“For those species that have already become extinct, our method shows that access to their genetic biodiversity may not be completely lost.”

Citation: Pask AJ, Behringer RR, Renfree MB (2008) Resurrection of DNA Function In Vivo from an Extinct Genome. PLoS ONE 3(5): e2240. doi:10.1371/journal.pone.0002240

Rebecca Scott | EurekAlert!
Further information:
http://www.unimelb.edu.au
http://www.plosone.org/doi/pone.0002240

Further reports about: DNA Tasmanian extinct function species

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>