Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will lung cancer recur? A genetic test may provide the answer

20.05.2008
The goal of developing reliable genetic tests to guide lung cancer treatment has taken a step forward. Researchers at Columbia University recently evaluated the ability of five high-risk genetic profiles, or signatures, to predict the likelihood that cancer would recur in patients whose non-small cell lung cancer was caught early and surgically removed. They will present their findings at the American Thoracic Society’s 2008 International Conference in Toronto on Tuesday, May 20.

“Non-small cell lung cancer, which accounts for about 80 percent of all lung cancers, has a high rate of recurrence even when treated early,” said lead researcher William Bulman, M.D. “If we knew specifically in which patients the cancer was likely to come back, we could recommend more aggressive therapy to those patients.” Dr. Bulman noted that genetic signatures for breast cancer are already commercially available and are used by physicians to guide treatment recommendations.

Dr. Bulman and his colleagues, Drs. Charles Powell and Alain Borczuk, tested five survival gene signatures in 21 patients, with squamous or adenocarinoma tumors who were followed for up to two years after their surgery. The accuracy of the tested signatures ranged from 40 to 80 percent and varied with the type of tumor. A 42-gene signature, for instance, was 82 percent accurate in predicting survival with lung adenocarcinoma, but only 70 percent accurate in predicting survival with squamous cell carcinoma.

“Lung cancer is a heterogeneous disease, and information captured in these tests helps to distinguish tumors in terms of clinical outcomes.” explained Dr. Bulman. “Our findings not only indicate that genetic signatures have clinical utility in personalizing the treatment of lung cancer, but also that it may be necessary to use different gene-based risk predictors with different tumor subtypes.”

... more about:
»Bulman »Genetic »Signature »recur

Dr. Bulman noted that this research is part of a larger effort to understand the biological basis for why some early stage lung cancers progress and metastasize and why some do not. He added that he and his colleagues are planning to test these genetic signatures in new cohorts of patients for the purposes of targeting patients at high risk for recurrence.

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: Bulman Genetic Signature recur

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>