Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dismantling Alzheimer’s Disease: Small Molecule Can Take Apart Disease-Associated Protein Fibers

19.05.2008
Researchers have shown, in unprecedented detail, how a small molecule is able to selectively take apart abnormally folded protein fibers connected to Alzheimer's disease and prion diseases. Finding a way to dismantle misfolded proteins has implications for new treatments for a host of neurodegenerative diseases.

Researchers from the University of Pennsylvania School of Medicine have shown, in unprecedented detail, how a small molecule is able to selectively take apart abnormally folded protein fibers connected to Alzheimer's disease and prion diseases. The findings appear online this week in the Proceedings of the National Academy of Sciences. Finding a way to dismantle misfolded proteins has implications for new treatments for a host of neurodegenerative diseases.

Abnormal accumulation of amyloid fibers and other misfolded forms in the brain cause neurodegenerative diseases. Similarly, build-up of abnormally folded prion proteins between neurons causes the human version of mad cow disease, Creutzfeldt-Jakob disease.

“Surprisingly, a small molecule called DAPH selectively targets the areas that hold fibers together, and converts fibers to a form that is unable to grow. Normally fibers grow from their ends, but the drug stops this activity,” says senior author James Shorter, PhD, Assistant Professor of Biochemistry and Biophysics. “Our data suggest that it is possible to generate effective small molecules that can attack amyloid fibers, which are associated with so many devastating diseases.”

... more about:
»Alzheimer »Amyloid »DAPH »Prion »Protein

The researchers are now working on how DAPH acts as a wedge to stop the fibers from growing. “Presumably DAPH fits very neatly into the crevices between fiber subunits,” explains Shorter. “When we grow yeast cells with the prion in the presence of DAPH, they begin to lose the prion. We also saw this in the test tube using pure fibers. The small molecule directly remodels fiber architecture. We’ve really been able to get at the mechanism by which DAPH, or any small molecule, works for the first time.” DAPH was originally found in a screen of small molecules that reduce amyloid-beta toxicity in the lab of co-author Vernon Ingram, Shorter’s collaborator at the Massachusetts Institute of Technology (MIT).

In a test tube, if a small amount of amyloid or prion fiber is added to the normal form of the protein, it converts it to the fiber form. But when DPAH is added to the mix, the yeast prion protein does not aggregate into fibers. “It’s essentially stopping fiber formation in its tracks,” says Huan Wang, first author and research specialist in Shorter’s lab. “We were surprised to see two very different proteins, amyloid-beta and Sup35, sensitive to this same small molecule.”

The next step is to identify more potent DAPH variants with greater selectivity for deleterious amyloids. Since some amyloids may turn out to be beneficial – for example, one form may be involved in long-term memory formation – it will be necessary to find a drug that does not hit all amyloids indiscriminately. “We’d need one that hits only problem amyloids, and DAPH gives us a hint that such selectivity is possible” says Shorter.

This work was initiated in Susan Lindquist’s lab at MIT and completed at Penn. The study was funded by the National Institute of General Medical Sciences, the Alzheimer’s Association, the Kurt and Johanna Immerwahr Fund for Alzheimer Research, a DuPont-MIT alliance, the American Heart Association, and pilot grants from the University of Pennsylvania Alzheimer’s Disease Core Center and Institute on Aging.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | newswise
Further information:
http://www.uphs.upenn.edu

Further reports about: Alzheimer Amyloid DAPH Prion Protein

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>