Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune Cells Kill Foes by Disrupting Mitochondria Two Ways

19.05.2008
T cells can initiate cellular suicide, also known as apoptosis, by a previously unrecognized pathway that starts with the destruction of a key enzyme in mitochondria, the power plant of the cell.

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular suicide, also known as programmed cell death or apoptosis, by a previously unrecognized pathway that starts with the destruction of a key enzyme in mitochondria, the power plant of the cell.

The study, from the lab of Judy Lieberman, a senior investigator at the Immune Disease Institute and Professor of Pediatrics at Harvard Medical School, reveals that T cells use both the novel pathway and the classical apoptotic pathway to interfere with mitochondrial function and induce cell death.

“This work gives us a new understanding of a major T cell defense pathway,” Lieberman says. The results will appear in the May 16 issue of Cell.

The Lieberman lab studies cytotoxic T lymphocytes (CTLs), key cells in the immune defense against viral infection and cancer. When CTLs recognize an infected or transformed target cell, they release the contents of cytolytic granules onto the target cell. These granules contain serine proteases called Granzymes, which induce programmed cell death in the target cells. Two major Granzymes, A and B, account for most of the killing activity in granules.

Granzyme B triggers the classical programmed cell death pathway involving breakdown of the outer mitochondrial membrane, and the release of death-promoting proteins which activate the caspase protease cascade and result in massive DNA damage.

Previous work from the Liebeman lab showed that Granzyme A initiates cell death by a different biochemical pathway. That pathway involves the mitochondria, but does not result in mitochondrial membrane breakdown or caspase activation, and triggers a different type of DNA damage. The current study was aimed at understanding how Granzyme A kills cells.

To identify Granzyme A target proteins in mitochondria, Lieberman and colleagues used proteomics to look at the fate of a large number of mitochondrial proteins after Granzyme A exposure. One protein, NDUFS3, a subunit of the large multi-protein Complex I assembly that participates in energy generation for the cell, disappeared.

Further work established that when Granzyme A was released into a cell, it could enter the mitochondria where it degraded NDUFS3. Further, the investigators showed that loss of NDUFS3 caused mitochondria to produce damaging reactive oxygen, known to be essential for Granzyme A’s deadly effects on cells. Destruction of NDUFS3 was sufficient to initiate the toxic effects of Granzyme A on human cells, they showed.

The new demonstrate that while both Granzymes target mitochondria, they do so in very different ways. Lieberman says she is not surprised that immune cells have multiple means of inducing mitochondrial-dependent cell death. “Many viruses and cancers have found ways to be resistant to the caspase-dependent apoptosis pathway triggered by Granzyme B, so it makes sense that immune cells would have a second, parallel pathway to cause cell death,” she said.

Written by Pat McCaffrey

The lead author on the paper is Denis Martinvalet, a postdoctoral fellow in the Lieberman lab. Other authors include Derek M Dykxhoorn, and Roger Ferrini of the Immune Disease Institute.

David Cameron | Harvard Medical School
Further information:
http://www.hms.harvard.edu

Further reports about: Granzyme Lieberman NDUFS3 Protein immune initiate mitochondria mitochondrial

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>