Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune Cells Kill Foes by Disrupting Mitochondria Two Ways

19.05.2008
T cells can initiate cellular suicide, also known as apoptosis, by a previously unrecognized pathway that starts with the destruction of a key enzyme in mitochondria, the power plant of the cell.

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular suicide, also known as programmed cell death or apoptosis, by a previously unrecognized pathway that starts with the destruction of a key enzyme in mitochondria, the power plant of the cell.

The study, from the lab of Judy Lieberman, a senior investigator at the Immune Disease Institute and Professor of Pediatrics at Harvard Medical School, reveals that T cells use both the novel pathway and the classical apoptotic pathway to interfere with mitochondrial function and induce cell death.

“This work gives us a new understanding of a major T cell defense pathway,” Lieberman says. The results will appear in the May 16 issue of Cell.

The Lieberman lab studies cytotoxic T lymphocytes (CTLs), key cells in the immune defense against viral infection and cancer. When CTLs recognize an infected or transformed target cell, they release the contents of cytolytic granules onto the target cell. These granules contain serine proteases called Granzymes, which induce programmed cell death in the target cells. Two major Granzymes, A and B, account for most of the killing activity in granules.

Granzyme B triggers the classical programmed cell death pathway involving breakdown of the outer mitochondrial membrane, and the release of death-promoting proteins which activate the caspase protease cascade and result in massive DNA damage.

Previous work from the Liebeman lab showed that Granzyme A initiates cell death by a different biochemical pathway. That pathway involves the mitochondria, but does not result in mitochondrial membrane breakdown or caspase activation, and triggers a different type of DNA damage. The current study was aimed at understanding how Granzyme A kills cells.

To identify Granzyme A target proteins in mitochondria, Lieberman and colleagues used proteomics to look at the fate of a large number of mitochondrial proteins after Granzyme A exposure. One protein, NDUFS3, a subunit of the large multi-protein Complex I assembly that participates in energy generation for the cell, disappeared.

Further work established that when Granzyme A was released into a cell, it could enter the mitochondria where it degraded NDUFS3. Further, the investigators showed that loss of NDUFS3 caused mitochondria to produce damaging reactive oxygen, known to be essential for Granzyme A’s deadly effects on cells. Destruction of NDUFS3 was sufficient to initiate the toxic effects of Granzyme A on human cells, they showed.

The new demonstrate that while both Granzymes target mitochondria, they do so in very different ways. Lieberman says she is not surprised that immune cells have multiple means of inducing mitochondrial-dependent cell death. “Many viruses and cancers have found ways to be resistant to the caspase-dependent apoptosis pathway triggered by Granzyme B, so it makes sense that immune cells would have a second, parallel pathway to cause cell death,” she said.

Written by Pat McCaffrey

The lead author on the paper is Denis Martinvalet, a postdoctoral fellow in the Lieberman lab. Other authors include Derek M Dykxhoorn, and Roger Ferrini of the Immune Disease Institute.

David Cameron | Harvard Medical School
Further information:
http://www.hms.harvard.edu

Further reports about: Granzyme Lieberman NDUFS3 Protein immune initiate mitochondria mitochondrial

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>