Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Part of International Effort to Thwart Viruses

15.05.2008
UAB (University of Alabama at Birmingham) scientists were part of an international research team that discovered the unique way certain viruses invade healthy cells, opening the door to new therapies that could block those viruses.

Viruses need a point-of-entry to a cell, typically binding to an antigen on the cell surface as a means of gaining access. The team, reporting in the March issue of the Journal of the American Chemical Society, used a special nuclear magnetic resonance (NMR) technique to precisely identify the point-of-entry on a healthy cell used by rabbit hemorrhagic disease virus (RHDV), a member of the calicivirus family.

The NMR studies definitively identified the main target of the RHDV virus as L-fucose, a sugar found on antigens on the surface of the target cell.

“We now know the chemical signature of the sugar that RHDV zeroes-in on as it invades a cell,” said N. Rama Krishna, Ph.D., professor of biochemistry and molecular genetics and a study co-author. “We can counterattack by designing a drug with the same signature but made even more attractive to the virus, so that the virus binds to the drug instead of binding to the target cell.

... more about:
»Antigen »NMR »RHDV »Target »bind

Krishna says the real significance is that this NMR technique can be used to design anti-viral drugs for similar viruses including other caliciviruses, a family that includes Norwalk and Hepatitis E viruses that cause disease in humans. In fact, an editorial on the study appearing in the April 17th issue of the journal Nature highlighted this work for its impact on the potential development of novel anti-viral drugs.

“This application can be widely used to search for and identify the likely contact points on cell surface antigens that different viruses use as their point-of-entry to the cell,” Krishna said. “By inducing the virus to preferentially bind with a drug that mimics the contact point, we think we can prevent it from infecting a cell.”

Krishna’s laboratory at UAB, one of the most sophisticated in the world in the quantitative use of the special technique called saturation-transfer difference NMR (STD-NMR), collaborated with Thomas Peters and Christoph Rademacher of the University of Luebeck, Monica Palcic of the Carlsberg Laboratory, and Francisco Parra of Instituto Universitario de Biotecnologia de Asturias in identifying the sugar recognized by the RHDV virus.

They placed antigens from the cell bodies in a solution with virus-like particles (VLPs), essentially an inactive virus. The hydrogen signals from the virus were irradiated with radiofrequency pulses. The energy received by the VLPs, called saturation, is passed on to the cell antigens at the binding site. he amount of saturation in those antigens can be measured, thus identifying which particular sugar on the antigens gets “hot”. Those sugars on the antigens, in this case the L-fucose, are the virus target.

“This is a compelling argument for the routine use of the STD-NMR technique in drug design and development in general – it is not limited to anti-virals. Interestingly, the method was originally developed in Germany for screening compound libraries, and is now a popular technique in the pharmaceutical industry for identifying lead compounds” Krishna said

NOTE: The University of Alabama at Birmingham is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

Bob Shepard | newswise
Further information:
http://www.uab.edu

Further reports about: Antigen NMR RHDV Target bind

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>