Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pain Free without Numbness - Substance Combination with Chili Peppers

A dentist's injection typically causes numbness for several hours. This experience could soon be history. Now, Clifford Woolf, professor at Harvard Medical School and the Massachusetts General Hospital, Boston, USA, and his colleagues have developed a combination of two agents which is able to specifically block pain without producing numbness or motor paralysis.

The substance is composed of a normally inactive derivative of the local anesthetic lidocaine, called QX314, and capsaicin, the pain-producing substance in chili peppers.

Capsaicin works by opening channels present only in pain fibers to allow the QX314 only into these cells, where it blocks their function, Woolf explained in the keynote lecture "Using Pain to Block Pain" at the international conference "Development and function of somatosensation and pain" of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. "This is the first example of using the body's own cellular channels as a drug delivery system, targeting treatment only at pain fibers," he pointed out.

Local anaesthetics are pain killers which are used during operations whereby patients remain alert during the procedure and thus, do not require general anaesthesia. "These common analgesics, including lidocaine, affect, however all neurons in the treated area," Woolf said. As a result, not only are pain receptors blocked but also touch receptors, producing numbness. Neurons, controlling muscles, are silenced as well, producing a temporary paralysis.

... more about:
»Capsaicin »Membrane »QX314 »Woolf »lidocaine »neurons »receptor

In order to specifically block pain receptors and leave touch sensors and motor function unharmed, the scientists used a normally inactive positively charged form of the local anaesthetic lidocaine called QX314. This particular type of lidocaine is special in that it is not able to pass through the cell membrane of neurons because it is charged. Since local anesthetics only operate inside neurons, an injection of QX314 alone is ineffective, unlike lidocaine which passes easily through the membrane of all cells and therefore blocks all neurons.

As QX314 only enters pain neurons and, thereby, acts exclusively as a pain killer, the researchers combined it with capsaicin. Capsaicin binds a membrane receptor which is only present in the membrane of neurons responsible for pain perception. Thus, the chili pepper substance opens channels, enabling QX314 to get into the cell and then block the pain receptors. Using rats, the scientists could show that, when applied to the animals' hind paws, the combination of QX314 and capsaicin exclusively blocks pain receptors. While completely blocking the response to painful stimuli, the animals could, nevertheless, move normally and were responsive to touch.

There is, however, one disadvantage of this current strategy, said Woolf. Capsaicin activates the sensors for pain and heat. "Thus, people's mouths seem to burn when eating very spicy food," he said. "To use the pain killing combination in patients, another way of opening the channel must be found to allow the QX314 into the cell without capsaicin causing its typical painful heat sensation until the QX314 gets into the cell and then kills the pain," commented Woolf. However, he and his colleagues are working on solving this problem and have recently found promising new non-painful ways of targeting QX314 into pain fibers, which they hope will be available soon for example, for dental patients or for mothers-to-be during labor."

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

Further reports about: Capsaicin Membrane QX314 Woolf lidocaine neurons receptor

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>