Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain Free without Numbness - Substance Combination with Chili Peppers

15.05.2008
A dentist's injection typically causes numbness for several hours. This experience could soon be history. Now, Clifford Woolf, professor at Harvard Medical School and the Massachusetts General Hospital, Boston, USA, and his colleagues have developed a combination of two agents which is able to specifically block pain without producing numbness or motor paralysis.

The substance is composed of a normally inactive derivative of the local anesthetic lidocaine, called QX314, and capsaicin, the pain-producing substance in chili peppers.

Capsaicin works by opening channels present only in pain fibers to allow the QX314 only into these cells, where it blocks their function, Woolf explained in the keynote lecture "Using Pain to Block Pain" at the international conference "Development and function of somatosensation and pain" of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. "This is the first example of using the body's own cellular channels as a drug delivery system, targeting treatment only at pain fibers," he pointed out.

Local anaesthetics are pain killers which are used during operations whereby patients remain alert during the procedure and thus, do not require general anaesthesia. "These common analgesics, including lidocaine, affect, however all neurons in the treated area," Woolf said. As a result, not only are pain receptors blocked but also touch receptors, producing numbness. Neurons, controlling muscles, are silenced as well, producing a temporary paralysis.

... more about:
»Capsaicin »Membrane »QX314 »Woolf »lidocaine »neurons »receptor

In order to specifically block pain receptors and leave touch sensors and motor function unharmed, the scientists used a normally inactive positively charged form of the local anaesthetic lidocaine called QX314. This particular type of lidocaine is special in that it is not able to pass through the cell membrane of neurons because it is charged. Since local anesthetics only operate inside neurons, an injection of QX314 alone is ineffective, unlike lidocaine which passes easily through the membrane of all cells and therefore blocks all neurons.

As QX314 only enters pain neurons and, thereby, acts exclusively as a pain killer, the researchers combined it with capsaicin. Capsaicin binds a membrane receptor which is only present in the membrane of neurons responsible for pain perception. Thus, the chili pepper substance opens channels, enabling QX314 to get into the cell and then block the pain receptors. Using rats, the scientists could show that, when applied to the animals' hind paws, the combination of QX314 and capsaicin exclusively blocks pain receptors. While completely blocking the response to painful stimuli, the animals could, nevertheless, move normally and were responsive to touch.

There is, however, one disadvantage of this current strategy, said Woolf. Capsaicin activates the sensors for pain and heat. "Thus, people's mouths seem to burn when eating very spicy food," he said. "To use the pain killing combination in patients, another way of opening the channel must be found to allow the QX314 into the cell without capsaicin causing its typical painful heat sensation until the QX314 gets into the cell and then kills the pain," commented Woolf. However, he and his colleagues are working on solving this problem and have recently found promising new non-painful ways of targeting QX314 into pain fibers, which they hope will be available soon for example, for dental patients or for mothers-to-be during labor."

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/en/news
http://www.hms.harvard.edu/dms/neuroscience/fac/woolf.html

Further reports about: Capsaicin Membrane QX314 Woolf lidocaine neurons receptor

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>