Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain Free without Numbness - Substance Combination with Chili Peppers

15.05.2008
A dentist's injection typically causes numbness for several hours. This experience could soon be history. Now, Clifford Woolf, professor at Harvard Medical School and the Massachusetts General Hospital, Boston, USA, and his colleagues have developed a combination of two agents which is able to specifically block pain without producing numbness or motor paralysis.

The substance is composed of a normally inactive derivative of the local anesthetic lidocaine, called QX314, and capsaicin, the pain-producing substance in chili peppers.

Capsaicin works by opening channels present only in pain fibers to allow the QX314 only into these cells, where it blocks their function, Woolf explained in the keynote lecture "Using Pain to Block Pain" at the international conference "Development and function of somatosensation and pain" of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. "This is the first example of using the body's own cellular channels as a drug delivery system, targeting treatment only at pain fibers," he pointed out.

Local anaesthetics are pain killers which are used during operations whereby patients remain alert during the procedure and thus, do not require general anaesthesia. "These common analgesics, including lidocaine, affect, however all neurons in the treated area," Woolf said. As a result, not only are pain receptors blocked but also touch receptors, producing numbness. Neurons, controlling muscles, are silenced as well, producing a temporary paralysis.

... more about:
»Capsaicin »Membrane »QX314 »Woolf »lidocaine »neurons »receptor

In order to specifically block pain receptors and leave touch sensors and motor function unharmed, the scientists used a normally inactive positively charged form of the local anaesthetic lidocaine called QX314. This particular type of lidocaine is special in that it is not able to pass through the cell membrane of neurons because it is charged. Since local anesthetics only operate inside neurons, an injection of QX314 alone is ineffective, unlike lidocaine which passes easily through the membrane of all cells and therefore blocks all neurons.

As QX314 only enters pain neurons and, thereby, acts exclusively as a pain killer, the researchers combined it with capsaicin. Capsaicin binds a membrane receptor which is only present in the membrane of neurons responsible for pain perception. Thus, the chili pepper substance opens channels, enabling QX314 to get into the cell and then block the pain receptors. Using rats, the scientists could show that, when applied to the animals' hind paws, the combination of QX314 and capsaicin exclusively blocks pain receptors. While completely blocking the response to painful stimuli, the animals could, nevertheless, move normally and were responsive to touch.

There is, however, one disadvantage of this current strategy, said Woolf. Capsaicin activates the sensors for pain and heat. "Thus, people's mouths seem to burn when eating very spicy food," he said. "To use the pain killing combination in patients, another way of opening the channel must be found to allow the QX314 into the cell without capsaicin causing its typical painful heat sensation until the QX314 gets into the cell and then kills the pain," commented Woolf. However, he and his colleagues are working on solving this problem and have recently found promising new non-painful ways of targeting QX314 into pain fibers, which they hope will be available soon for example, for dental patients or for mothers-to-be during labor."

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/en/news
http://www.hms.harvard.edu/dms/neuroscience/fac/woolf.html

Further reports about: Capsaicin Membrane QX314 Woolf lidocaine neurons receptor

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>