Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bears and hibernation: new insights into metabolism in extreme conditions

15.05.2008
Due to their ability to produce a potent inhibitor of protein degradation, hibernating bears do not lose muscle mass after long periods of hibernation.

This is the main conclusion of the study published in the journal Clinical Nutrition, directed by Professor Josep M. Argilés and co-written by Francisco J. López-Soriano, Gemma Fuster, Sílvia Busquets and Vanessa Almendro of the Cancer Research Group at the Biochemistry and Molecular Biology Department of the University of Barcelona (UB).

In the article, entitled «Antiproteolytic effects of plasma from hibernating bears: A new approach for muscle wasting therapy?», the team researches for the first time the physiological reasons for an effect that is well known to the scientific community – the fact that hibernating bears do not lose muscle tissue, only fat. In the experiment, the team studied the physiological response of muscle cells of laboratory rats grown with hibernating bear plasma outside the period of hibernation (from the Ursus arctos in the Aran Valley in the Pyrenees, a protected species since 1973). In the presence of hibernating bear plasma, the proteolytic rate in the rat muscle fell by 40%. «This suggests that the plasma of hibernating bears contains a factor that regulates protein breakdown, blocking this process in the organism», explains Argilés, Professor of Biochemistry and Molecular Biology at the Faculty of Biology.

Why study bears as a physiological model? Hibernation is a characteristic feature of the life cycle of this large mammal and, in the case of the Pyrenean bear, usually lasts from the second half of November until March or April. During hibernation, bears may go for up to three months without food or drink, and reduce their metabolism to adapt to these extreme conditions. What is more, bears have a relatively stable metabolism and conserve their body temperature in these situations.

In general, the destruction of muscle tissue (cachexia) is a sign of metabolic stress, and in humans is associated with pathologies such as cancer or AIDS or with long periods of malnutrition, immobilization and microgravity. The main channels of protein breakdown in cells are lysosomes and proteasomes, which are responsible for approximately 80% of the proteolytic activity. But the mechanisms of protein breakdown are still not well understood. «Compared with our knowledge of protein synthesis, we know very little about the processes of breakdown, especially about regulation. This possible inhibitory effect of hibernating bear plasma may regulate proteolysis in a natural way, which may have a series of implications for treatment», notes Argilés.

In 1993, the Cancer Research Group at the Biochemistry and Molecular Biology Department at the UB was the first to describe the ubiquitin-proteasome system, the proteolytic system involved in muscle mass loss in pathological situations. This system – an enzyme cascade – is the main cell pathway for protein turnover and also participates in key cellular processes such as the cell cycle, DNA repair, and so on. Years after this first discovery, the same team of scientists at the UB has again broken new ground in detecting a possible natural inhibitor of the cellular mechanisms involved in protein metabolism.

The experts are continuing their research to identify the factor that provokes the antiproteolytic effect, a discovery that would open up possibilities for future strategies for treating cachexia. «In many cases, the response to diseases can be found by studying nature», says Argilés, who is also organizing of the World Cachexia Congress to be held in 2009. Santiago Palazón, of the University of Barcelona, and Jesús Fernández, of Barcelona Zoo, also took part in the project published in Clinical Nutrition.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

Further reports about: Argilés Plasma breakdown hibernating hibernation metabolism

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>