Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering induction of bone formation using embryonic stem cells

14.05.2008
Researchers at the University of Twente break new ground by successfully creating bone tissue “in vivo”, using embryonic stem cells.

They imitated bone formation in embryos and children, which uses cartilage as a template. This new approach appears to be a promising way of repairing bone defects. This week, the researchers’ findings are presented in the Proceedings of the National Academy of Sciences (PNAS).

Previous attempts to create bone using embryonic stem cells were unsuccessful. In the lab, there was clear evidence that these stem cells were differentiating into the bone lineage “in vitro”, however this process stalled after implantation and no bone tissue was formed. Yet, this approach did lead to bone formation when cultured adult stem cells from bone marrow were used. This direct approach is, amongst others, involved in the formation of the bone found in the skull. The researchers at Twente have now adopted a different approach.

Unexpected
While searching for a suitable scaffold to use for cartilage tissue engineering with mouse embryonic stem cells, the researchers selected a ceramic material that is often used as bone void filler. Other materials appeared to be unsuitable or they made it difficult to locate the implanted cells. In the lab, mouse embryonic stem cells were seeded onto this ceramic material and induced into the developmental pathway leading to cartilage formation. Following implantation under the skin of a mouse, however, the cartilage tissue developed further, and was replaced by bone. Bone formation via cartilage as a template proved to be an efficient, if unexpected, approach. Furthermore, this is the way in which most of the bones in the embryo are formed. Bone growth in children also occurs via this process, known as endochondral ossification.
Repair
In their article, the researchers show that bone tissue is also formed in a bone defect. To demonstrate this, a scaffold with cells that had already formed cartilage, was implanted into a rat with a defect in its skull. Besides under the skin, bone was also formed in this bone defect. Therefore, this approach seems to be a promising new technique for repairing damaged bone.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Cells Embryo Embryonic Stem cartilage defect formation

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>