Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering induction of bone formation using embryonic stem cells

14.05.2008
Researchers at the University of Twente break new ground by successfully creating bone tissue “in vivo”, using embryonic stem cells.

They imitated bone formation in embryos and children, which uses cartilage as a template. This new approach appears to be a promising way of repairing bone defects. This week, the researchers’ findings are presented in the Proceedings of the National Academy of Sciences (PNAS).

Previous attempts to create bone using embryonic stem cells were unsuccessful. In the lab, there was clear evidence that these stem cells were differentiating into the bone lineage “in vitro”, however this process stalled after implantation and no bone tissue was formed. Yet, this approach did lead to bone formation when cultured adult stem cells from bone marrow were used. This direct approach is, amongst others, involved in the formation of the bone found in the skull. The researchers at Twente have now adopted a different approach.

Unexpected
While searching for a suitable scaffold to use for cartilage tissue engineering with mouse embryonic stem cells, the researchers selected a ceramic material that is often used as bone void filler. Other materials appeared to be unsuitable or they made it difficult to locate the implanted cells. In the lab, mouse embryonic stem cells were seeded onto this ceramic material and induced into the developmental pathway leading to cartilage formation. Following implantation under the skin of a mouse, however, the cartilage tissue developed further, and was replaced by bone. Bone formation via cartilage as a template proved to be an efficient, if unexpected, approach. Furthermore, this is the way in which most of the bones in the embryo are formed. Bone growth in children also occurs via this process, known as endochondral ossification.
Repair
In their article, the researchers show that bone tissue is also formed in a bone defect. To demonstrate this, a scaffold with cells that had already formed cartilage, was implanted into a rat with a defect in its skull. Besides under the skin, bone was also formed in this bone defect. Therefore, this approach seems to be a promising new technique for repairing damaged bone.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Cells Embryo Embryonic Stem cartilage defect formation

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>