Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanisms controlling insulin release and fat deposition discovered

14.05.2008
Scientists at the Swedish medical university Karolinska Institutet have in two recent studies shown that a receptor called ALK7 plays important roles in the regulation of body fat deposition as well as the release of insulin from beta-cells in the pancreas. These findings have implications for the development of treatments against diabetes and obesity.

“We have shown in animal studies that removing the ALK7 receptor improves insulin release by beta-cells in the pancreas, and at the same time decreases fat deposition in situations of high caloric intake”, says Professor Carlos Ibáñez, who lead the two studies that are now published as back-to-back papers in the PNAS. “The well-known connections between diabetes and obesity make our combined findings quite exciting.”

Up to 6 per cent of the world population is estimated to suffer from some form of diabetes, either due to a reduced ability to produce insulin, or to insulin resistance. Insulin is a hormone required by cells in the body to absorb glucose from the blood, thereby providing them with energy. Obesity has been shown to increase the risk of developing diabetes, and as overweight becomes more prevalent in the human population, so do the cases of diabetes.

The research group led by Carlos Ibáñez studies how signaling by growth factors and their receptors regulate different physiological functions in the body. They have recently investigated the functions of one of these receptors, called ALK7, using mutant mice (knock-out mice) lacking this receptor. They found that in the absence of ALK7, mice developed abnormally high levels of insulin in the blood, which with age led to insulin resistance and liver steatosis, a pathological condition in which the liver enlarges and accumulates abnormally high levels of fat.

In collaboration with another research group at Karolinska Institutet, led by Professor Per-Olof Berggren, they also found that Calcium signaling in pancreatic beta-cells was reduced by the actions of the growth factor Activin B through the ALK7 receptor, and that blood glucose levels regulates the expression of both Activin B and ALK7. In agreement with these results, mice lacking Activin B also developed hyperinsulinemia to a similar extent as ALK7 mutants.

“In other words, our data revealed an unexpected negative feedback loop in the control of glucose-dependent insulin release, mediated the actions of Activin B on the ALK7 receptor”, says Carlos Ibáñez.

In the second study, the scientists found that mice lacking ALK7 accumulated less fat and gained less weight than their normal counterparts when fed on a high-fat diet. They discovered that another growth factor called GDF3 could also signal via the ALK7 receptor, and that mice lacking GDF3 showed similar defects in fat deposition and weight gain as the ALK7 mutants. Intriguingly, however, mutant mice consumed equal amounts of food as their normal counterparts during the experiment.

“These results show that lack of ALK7 or GDF3 improves energy balance in the body under regimes of high caloric intake”, says Carlos Ibáñez.

Publications:

‘Activin B receptor ALK7 is a negative regulator of pancreatic ß-cell function’, Philippe Bertolino, Rebecka Nilsson, Eva Reissmann, Olov Andersson, Per-Olof Berggren and Carlos F. Ibáñez, PNAS, online early edition, 12-16 May 2008.

‘Growth/Differentiation Factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity’, Olov Andersson, Marion Korach-Andre, Eva Reissmann, Carlos F. Ibáñez och Philippe Bertolino, PNAS, online early edition, 12-16 May 2008.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: ALK7 Activin Deposition Diabetes HDL-cholesterol Ibáñez Insulin lacking receptor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>