Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanisms controlling insulin release and fat deposition discovered

14.05.2008
Scientists at the Swedish medical university Karolinska Institutet have in two recent studies shown that a receptor called ALK7 plays important roles in the regulation of body fat deposition as well as the release of insulin from beta-cells in the pancreas. These findings have implications for the development of treatments against diabetes and obesity.

“We have shown in animal studies that removing the ALK7 receptor improves insulin release by beta-cells in the pancreas, and at the same time decreases fat deposition in situations of high caloric intake”, says Professor Carlos Ibáñez, who lead the two studies that are now published as back-to-back papers in the PNAS. “The well-known connections between diabetes and obesity make our combined findings quite exciting.”

Up to 6 per cent of the world population is estimated to suffer from some form of diabetes, either due to a reduced ability to produce insulin, or to insulin resistance. Insulin is a hormone required by cells in the body to absorb glucose from the blood, thereby providing them with energy. Obesity has been shown to increase the risk of developing diabetes, and as overweight becomes more prevalent in the human population, so do the cases of diabetes.

The research group led by Carlos Ibáñez studies how signaling by growth factors and their receptors regulate different physiological functions in the body. They have recently investigated the functions of one of these receptors, called ALK7, using mutant mice (knock-out mice) lacking this receptor. They found that in the absence of ALK7, mice developed abnormally high levels of insulin in the blood, which with age led to insulin resistance and liver steatosis, a pathological condition in which the liver enlarges and accumulates abnormally high levels of fat.

In collaboration with another research group at Karolinska Institutet, led by Professor Per-Olof Berggren, they also found that Calcium signaling in pancreatic beta-cells was reduced by the actions of the growth factor Activin B through the ALK7 receptor, and that blood glucose levels regulates the expression of both Activin B and ALK7. In agreement with these results, mice lacking Activin B also developed hyperinsulinemia to a similar extent as ALK7 mutants.

“In other words, our data revealed an unexpected negative feedback loop in the control of glucose-dependent insulin release, mediated the actions of Activin B on the ALK7 receptor”, says Carlos Ibáñez.

In the second study, the scientists found that mice lacking ALK7 accumulated less fat and gained less weight than their normal counterparts when fed on a high-fat diet. They discovered that another growth factor called GDF3 could also signal via the ALK7 receptor, and that mice lacking GDF3 showed similar defects in fat deposition and weight gain as the ALK7 mutants. Intriguingly, however, mutant mice consumed equal amounts of food as their normal counterparts during the experiment.

“These results show that lack of ALK7 or GDF3 improves energy balance in the body under regimes of high caloric intake”, says Carlos Ibáñez.

Publications:

‘Activin B receptor ALK7 is a negative regulator of pancreatic ß-cell function’, Philippe Bertolino, Rebecka Nilsson, Eva Reissmann, Olov Andersson, Per-Olof Berggren and Carlos F. Ibáñez, PNAS, online early edition, 12-16 May 2008.

‘Growth/Differentiation Factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity’, Olov Andersson, Marion Korach-Andre, Eva Reissmann, Carlos F. Ibáñez och Philippe Bertolino, PNAS, online early edition, 12-16 May 2008.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: ALK7 Activin Deposition Diabetes HDL-cholesterol Ibáñez Insulin lacking receptor

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>