Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient protein offers clues to killer condition

13.05.2008
More than 600 million years of evolution has taken two unlikely distant cousins – turkeys and scallops - down very different physical paths from a common ancestor. But University of Leeds researchers have found that a motor protein, myosin 2, remains structurally identical in both creatures.

The discovery suggests that the tiny motor protein is much more important than previously thought – and for humans it may even hold a key to understanding potentially fatal conditions such as aneurisms.

Says Professor Knight of the University’s Faculty of Biological Sciences: “This is an astonishing discovery. Myosin 2’s function is to make the smooth muscle in internal organs tense and relax involuntarily. These creatures have completely different regulatory mechanisms: the myosin in a turkey’s gizzards allows it to ‘chew’ food in the absence of teeth, while that in a scallop enables it to swim. Yet they have exactly the same structure.”

Myosin molecules generate tension in smooth muscle by adhering to form a filament, which grabs hold of a neighbouring filament, and relaxes by letting go. When the muscle is in a relaxed state, myosin molecule folds itself up into a compact structure.

... more about:
»Muscle »Myosin »Protein »scallop

This folded structure allows the smooth muscles to adjust to being different lengths so they can operate over a large distance, such as the bladder or the uterus expanding and contracting. In contrast, skeletal muscles operate over a narrow range, defined by how much joints can move.

Professor Knight says: “We were puzzled to find that the scallop’s myosin 2 had retained its ability to fold and unfold, as they don’t need to accommodate a large range of movement. After all, the scallop only moves its shell a little when it swims.

“In evolution, if something is not essential to the survival of an organism, it is not conserved. The fact that the scallop has retained all the functions of its myosin 2 over hundreds of millions of years tells us that this folding is of fundamental functional importance in muscle and that we don’t know as much about it as we need to know.”

In humans, any changes in the composition of myosin within the muscles can be fatal. For example, a swelling in the walls of an artery can cause a brain aneurism, while an enlarged heart can lead to cardiac arrest in a young, fit person.

Says Professor Knight: “Because these malfunctions occur in our internal organs, we are often unaware of what is going wrong until it’s too late. Learning how to control myosin, how to move it around without disturbing the delicate balance between filaments and individual molecules, is an emerging area and one we are only just beginning to tackle.”

The research, funded by BBSRC, is published in the US journal Proceedings of the National Academy of Sciences (PNAS).

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/current/ancient_protein.htm
http://www.leeds.ac.uk

Further reports about: Muscle Myosin Protein scallop

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>