Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient protein offers clues to killer condition

13.05.2008
More than 600 million years of evolution has taken two unlikely distant cousins – turkeys and scallops - down very different physical paths from a common ancestor. But University of Leeds researchers have found that a motor protein, myosin 2, remains structurally identical in both creatures.

The discovery suggests that the tiny motor protein is much more important than previously thought – and for humans it may even hold a key to understanding potentially fatal conditions such as aneurisms.

Says Professor Knight of the University’s Faculty of Biological Sciences: “This is an astonishing discovery. Myosin 2’s function is to make the smooth muscle in internal organs tense and relax involuntarily. These creatures have completely different regulatory mechanisms: the myosin in a turkey’s gizzards allows it to ‘chew’ food in the absence of teeth, while that in a scallop enables it to swim. Yet they have exactly the same structure.”

Myosin molecules generate tension in smooth muscle by adhering to form a filament, which grabs hold of a neighbouring filament, and relaxes by letting go. When the muscle is in a relaxed state, myosin molecule folds itself up into a compact structure.

... more about:
»Muscle »Myosin »Protein »scallop

This folded structure allows the smooth muscles to adjust to being different lengths so they can operate over a large distance, such as the bladder or the uterus expanding and contracting. In contrast, skeletal muscles operate over a narrow range, defined by how much joints can move.

Professor Knight says: “We were puzzled to find that the scallop’s myosin 2 had retained its ability to fold and unfold, as they don’t need to accommodate a large range of movement. After all, the scallop only moves its shell a little when it swims.

“In evolution, if something is not essential to the survival of an organism, it is not conserved. The fact that the scallop has retained all the functions of its myosin 2 over hundreds of millions of years tells us that this folding is of fundamental functional importance in muscle and that we don’t know as much about it as we need to know.”

In humans, any changes in the composition of myosin within the muscles can be fatal. For example, a swelling in the walls of an artery can cause a brain aneurism, while an enlarged heart can lead to cardiac arrest in a young, fit person.

Says Professor Knight: “Because these malfunctions occur in our internal organs, we are often unaware of what is going wrong until it’s too late. Learning how to control myosin, how to move it around without disturbing the delicate balance between filaments and individual molecules, is an emerging area and one we are only just beginning to tackle.”

The research, funded by BBSRC, is published in the US journal Proceedings of the National Academy of Sciences (PNAS).

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/current/ancient_protein.htm
http://www.leeds.ac.uk

Further reports about: Muscle Myosin Protein scallop

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>