Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What’s the difference between a human and a fruit fly?

13.05.2008
Fruit flies are dramatically different from humans not in their number of genes, but in the number of protein interactions in their bodies, according to scientists who have developed a new way of estimating the total number of interactions between proteins in any organism.

The new research, published today (13 May 2008) in the Proceedings of the National Academy of Sciences journal, shows that humans have approximately 10 times more protein interactions than the simple fruit fly, and 20 times as many as simple, single-cell yeast organisms.

This contradicts comparisons between the numbers of genes in different organisms, which yield surprising results: humans have approximately 24,000 genes, but fruit flies are not far behind, with approximately 14,000 genes.

The interaction between different proteins is behind all physiological systems in the human body. When the body digests food, responds to a change in temperature, or fights off an infection, numerous combinations of protein interactions are involved. However, until now it has been impossible to calculate the numbers of interactions that take place within different organisms.

... more about:
»Human »Interaction »Protein »genes »organism

Professor Michael Stumpf from Imperial College London’s Department of Life Sciences, one of the paper’s authors, explains the significance of the new study, saying:

“Scientists have believed for some time that the complexity of an organism’s protein interactions determine its biological complexity, but until now it’s been impossible to put a number on the size of one organism’s interaction network compared to another, as relatively little work has been done to identify and map these interactions.”

Scientists refer to the total number of protein interactions in the body as the “human interactome”, likening it to the human genome, which is most commonly associated with giving us our human traits.

Professor Stumpf adds: “Understanding the human genome definitely does not go far enough to explain what makes us different from more simple creatures. Our study indicates that protein interactions could hold one of the keys to unraveling how one organism is differentiated from another.”

The researchers devised a mathematical tool which allows them to predict the total size of an organism’s protein interaction network based on currently available, incomplete data.

The researchers’ next steps will be to make much more detailed predictions based on careful comparisons between species. This will be crucial in order to understand, for example, why some fungal species, such as baker’s yeast are important in the production of bread and beer, while other closely related species cause fungal infections with high mortality rates.

The study was carried out by scientists at Imperial College London, the Max-Planck-Institute for Molecular Biology in Germany and the University of Arhus in Denmark.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Human Interaction Protein genes organism

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>