Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In the liver cirrhosis network

Gaining new insights into the processes of liver cirrhosis through systems biology methods

Scientists of the HepatoSys consortium, the network for the systems biology study of the liver cell (hepatocyte), have gained new insights into the processes of liver cirrhosis.

They found that hepatocytes affected by damage to the liver undergo a mutation and contribute actively to the chronic cicatrisation of the tissue. The findings of researchers working under Prof. Dr. Steven Dooley, Medical School in Mannheim, University of Heidelberg, pave the way to new perspectives regarding the treatment of the hitherto incurable liver disease.

Of all the body's organs, the liver has the unique ability to regenerate completely after having suffered damage either through injuries, toxic substances such as alcohol, certain medication or other liver damaging substances, provided the causes are eliminated. Alcoholism or infections with hepatitis B or C viruses do result in a lasting malfunction of the liver tissue, which impedes the regeneration process. The growth factor TGF-beta plays an important role both in the healing process and in the continuing chronic damage.

... more about:
»Organ »TGF-Beta »cirrhosis »hepatocyte »liver

After the organ has been damaged, TGF-beta becomes active and triggers signal transmission paths which eventually lead to the closing of the wound. However, if the damage is of a chronic nature, the growth factor changes from being a helper to being a harmful agent: its permanent activation and the excessive healing process lead to a changed architecture of the liver tissue. In place of functional hepatocytes there is an increasing occurrence of fibroblast-like cells which can be classified as connective tissue. Furthermore, there is an increased production of extracellular matrix, a form of grout, so to speak, for the intercellular space. The organ "scars over".

"With the help of Systems Biology, we want to find out what impact the excessive TGF-beta signal effect has on the hepatocyte", says Dooley, head of the Section for Molecular Alcohol Research in the Gastroenterology Department of the II. Medicinal Clinic in Mannheim. For this purpose, he and his team chose the co-called top-down approach: they cultivated primary (recently isolated) hepatocytes, stimulated them with TGF-beta and then examined which genes had been activated by this treatment. In doing so, they found that primarily the genes typical for fibroblasts became active. "The modelling of the experimental results and the subsequent testing of the predictions with laboratory animals showed that the lasting effect of TGF-beta leads to the hepatocytes losing their typical appearance and metamorphosing to fibroblast-like cells", explains the scientist.

The findings of the Mannheim HepatoSys-team come as a surprise and shine a completely new light onto liver cirrhosis. So far, scientists had assumed that only one cell type in the liver, the hepatic stellate cells, change into fibroblast-like tissue while the hepatocytes die off. These new insights allow a search for new ways of treating liver cirrhosis. At this point, the advancing disease is incurable and eventually leads to liver failure. At present, liver transplantation is the last resort.

Prof. Steven Dooley will speak on saturday, May 24nd, during the SBMC in Dresden about his work on TGF-beta induced signal paths in liver cells. The complete conference program and an online registration form can be found at

Journalists are invited to attend the conference.

About the SBMC and HepatoSys
The second Conference on Systems Biology of Mammalian Cells (SBMC) will take place May 22 ? 24, 2008, in Dresden, Germany, and is organized by HepatoSys, the German Systems Biology Competence Network for the investigation of liver cells. HepatoSys was founded in 2004 by the Federal Ministry of Education and Research (BMBF) in co-operation with the Project Management Jülich (PtJ). The research groups in this network work on an interdisciplinary consideration of all processes in the liver with special focus on the liver cell (hepatocyte). Scientists coming from completely different fields collaborate closely on computer modelling of the functions of the biological system. The objective is a virtual liver cell which would make it possible to reproduce model physiological processes in silico.

* Word formation consisting of Hepatocyte - liver cell - and Systems Biology

Dr. Ute Heisner | idw
Further information:

Further reports about: Organ TGF-Beta cirrhosis hepatocyte liver

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>