Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the liver cirrhosis network

13.05.2008
Gaining new insights into the processes of liver cirrhosis through systems biology methods

Scientists of the HepatoSys consortium, the network for the systems biology study of the liver cell (hepatocyte), have gained new insights into the processes of liver cirrhosis.

They found that hepatocytes affected by damage to the liver undergo a mutation and contribute actively to the chronic cicatrisation of the tissue. The findings of researchers working under Prof. Dr. Steven Dooley, Medical School in Mannheim, University of Heidelberg, pave the way to new perspectives regarding the treatment of the hitherto incurable liver disease.

Of all the body's organs, the liver has the unique ability to regenerate completely after having suffered damage either through injuries, toxic substances such as alcohol, certain medication or other liver damaging substances, provided the causes are eliminated. Alcoholism or infections with hepatitis B or C viruses do result in a lasting malfunction of the liver tissue, which impedes the regeneration process. The growth factor TGF-beta plays an important role both in the healing process and in the continuing chronic damage.

... more about:
»Organ »TGF-Beta »cirrhosis »hepatocyte »liver

After the organ has been damaged, TGF-beta becomes active and triggers signal transmission paths which eventually lead to the closing of the wound. However, if the damage is of a chronic nature, the growth factor changes from being a helper to being a harmful agent: its permanent activation and the excessive healing process lead to a changed architecture of the liver tissue. In place of functional hepatocytes there is an increasing occurrence of fibroblast-like cells which can be classified as connective tissue. Furthermore, there is an increased production of extracellular matrix, a form of grout, so to speak, for the intercellular space. The organ "scars over".

"With the help of Systems Biology, we want to find out what impact the excessive TGF-beta signal effect has on the hepatocyte", says Dooley, head of the Section for Molecular Alcohol Research in the Gastroenterology Department of the II. Medicinal Clinic in Mannheim. For this purpose, he and his team chose the co-called top-down approach: they cultivated primary (recently isolated) hepatocytes, stimulated them with TGF-beta and then examined which genes had been activated by this treatment. In doing so, they found that primarily the genes typical for fibroblasts became active. "The modelling of the experimental results and the subsequent testing of the predictions with laboratory animals showed that the lasting effect of TGF-beta leads to the hepatocytes losing their typical appearance and metamorphosing to fibroblast-like cells", explains the scientist.

The findings of the Mannheim HepatoSys-team come as a surprise and shine a completely new light onto liver cirrhosis. So far, scientists had assumed that only one cell type in the liver, the hepatic stellate cells, change into fibroblast-like tissue while the hepatocytes die off. These new insights allow a search for new ways of treating liver cirrhosis. At this point, the advancing disease is incurable and eventually leads to liver failure. At present, liver transplantation is the last resort.

Prof. Steven Dooley will speak on saturday, May 24nd, during the SBMC in Dresden about his work on TGF-beta induced signal paths in liver cells. The complete conference program and an online registration form can be found at http://www.sbmc08.de

Journalists are invited to attend the conference.

About the SBMC and HepatoSys
The second Conference on Systems Biology of Mammalian Cells (SBMC) will take place May 22 ? 24, 2008, in Dresden, Germany, and is organized by HepatoSys, the German Systems Biology Competence Network for the investigation of liver cells. HepatoSys was founded in 2004 by the Federal Ministry of Education and Research (BMBF) in co-operation with the Project Management Jülich (PtJ). The research groups in this network work on an interdisciplinary consideration of all processes in the liver with special focus on the liver cell (hepatocyte). Scientists coming from completely different fields collaborate closely on computer modelling of the functions of the biological system. The objective is a virtual liver cell which would make it possible to reproduce model physiological processes in silico.

* Word formation consisting of Hepatocyte - liver cell - and Systems Biology

Dr. Ute Heisner | idw
Further information:
http://www.sbmc08.de

Further reports about: Organ TGF-Beta cirrhosis hepatocyte liver

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>