Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How embryonic stem cells develop into tissue-specific cells

13.05.2008
While it has long been known that embryonic stem cells have the ability to develop into any kind of tissue-specific cells, the exact mechanism as to how this occurs has heretofore not been demonstrated.

Now, researchers at the Hebrew University of Jerusalem and elsewhere have succeeded in graphically revealing this process, resolving a long-standing question as to whether the stem cells achieve their development through selective activation or selective repression of genes.

The collaborative research group, which included Dr. Eran Meshorer of the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem, has revealed that the embryonic stem (ES) cells express large proportions of their genome “promiscuously.” This permissive expression includes lineage-specific and tissue-specific genes, non-coding regions of the genome that are normally “silent,” and repetitive sequences in the genome, which comprise the majority of the mammalian genome but are also normally not expressed.

When ES cells differentiate into specific cell tissue-types, they undergo global genetic silencing. But until this occurs, the ES cells maintain an open and active genome. This might very well be the secret of their success, since by maintaining this flexibility they maintain their capacity to become any cell type. Once silencing, or genetic repression, occurs, this ability is gone.

... more about:
»Embryonic »Stem »develop »tissue-specific

Thus, one can say that the ES cells stand at the ready until the “last minute” -- prepared to engage in selective activation into specific cells -- holding “in abeyance” their ability to become any kind of cells at the point and time required.

To reveal the process as to how this occurs, the researchers created the first full-mouse genomic platform of DNA microarrays. Microarrays are glass-based chips that allow simultaneous detection of thousands of genes. The microarrays used in the study were not confined to specific genes only but spanned the entire genome.

Hundreds of such microarrays were required in the study to cover the entire genome in different time points during stem cell differentiation. It was by observation of these sequences that the researchers were able to establish exactly how and at what point the stem cells developed into specific tissue cells and when the silencing occurs.

The project carried out by the researchers appears in the latest issue of the journal Cell Stem Cell. The collaborators in addition to Dr. Meshorer who participated in the project include Tom Misteli, Ron McKay, Stuart Le Grice, Sol Efroni and Kenneth Buetow of the US National Institutes of Health, Thomas Gingeras of Affymetrix Inc. of Santa Clara, Calif., and David Bazett-Jones of The Hospital for Sick Children, Toronto.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Embryonic Stem develop tissue-specific

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>