Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising discovery: Multicellular response is 'all for one'

09.05.2008
Real or perceived threats can trigger the well-known “fight or flight response” in humans and other animals. Adrenaline flows, and the stressed individual’s heart pumps faster, the muscles work harder, the brain sharpens and non-essential systems shut down. The whole organism responds in concert in order to survive.

At the molecular level, it has been widely assumed that, in single-celled organisms, each cell perceives its environment -- and responds to stress conditions -- individually, each on its own to protect itself. Likewise, it had been thought that cells in multicellular organisms respond the same way, but a new study by scientists at Northwestern University reports otherwise.

The Northwestern researchers demonstrated something very unexpected in their studies of the worm C. elegans: Authority is taken away from individual cells and given to two specialized neurons to sense temperature stress and organize an integrated molecular response for the entire organism.

The study, with results that show a possible parallel with the orchestrated “fight or flight response,” will be published in the May 9 issue of the journal Science.

... more about:
»Molecular »neurons »organism »temperature

“This was surprising -- that two neurons control the response of the 957 other cells in C. elegans,” said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern’s Weinberg College of Arts and Sciences. He led the research team.

“It is well established that single cells respond to physiological stress on their own, cell by cell. Now we’ve shown this is not the case when individual cells become organized to form a multicellular organism. Now it is all for one -- an integrated system where the cells and tissues only respond to stress when the neuronal signal says to respond as an organism.”

The findings have implications for new ways of thinking about diseases that affect the stress pathways, says Morimoto. Neurons that sense the environment govern such important pathways as stress response and molecular chaperones, which play a significant role in aging and neurodegenerative diseases.

In their experiments, the researchers genetically blocked the two thermosensory neurons (known as AFDs) and their ability to sense temperature and discovered there was no response to stress in any cell in the organism without them. (C. elegans is a transparent roundworm whose genome, or complete genetic sequence, is known and is a favorite organism of biologists.)

“This shows, for the first time, that the molecular response to physiological stress is organized by specific neurons and suggests similarities to the neurohormonal response to stress,” said Morimoto, who was the first to clone a human heat shock gene in 1985. “The two neurons control how all the other cells in the animal sense and respond to physiological stress.”

The team also checked the “machinery” of the 957 other cells (those that are not thermosensory neurons) in the mutant animals and determined that the individual cells could sense an increase in temperature. But, because the thermosensory neurons were not working properly and sending signals, the cells did not initiate a heat shock response. No signal, no response.

The researchers proposed a model whereby this loss of cell autonomy serves to integrate behavioral, metabolic and stress-related responses to establish an organismal response to environmental change.

The researchers would predict, considering the study’s results, that other organisms including humans might have similar classes of neurons that organize and orchestrate a response to stress -- a central neuronal control switch for regulating temperature and the expression of genes that protect the health of proteins.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Molecular neurons organism temperature

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>