Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome “lassoing”: A new key mechanism in cell division

09.05.2008
Scientists at the IFOM-IEO Campus have revealed the function of a protein that is indispensable for passing on an accurate copy of the genome from mother to daughter cells. This study, published in Cell, opens up new avenues of research to reduce the toxicity of chemotherapy in the treatment of cancer.

The protein can be compared to a cowboy’s lasso: it catches chromosomes and ties them to a transitory structure assembled during cell division. Once they have been neatly tied up, the chromosomes await the end of replication to be equally distributed between the two daughter cells.

But if the lasso doesn’t catch them, chromosomes end up being randomly scattered, with potentially disastrous genetic effects: should cells survive this, they receive the wrong genetic inheritance, with dire consequences. The structure and function of this chromosomal lasso were discovered in Milan, at the IFOM-IEO Campus (that hosts the laboratories of the FIRC Institute of Molecular Oncology Foundation – IFOM – and of the European Institute of Oncology – IEO) and these findings have just been published in the prestigious scientific journal, Cell.

“We’ve been studying a molecule called Ndc80 – explains Andrea Musacchio, principal author of the study, and head of a research group in the Department of Experimental Oncology (IEO). This protein is a key player necessary for the correct distribution of genetic inheritance. Ndc80 could potentially be used as a target for new drugs that would have fewer toxic side-effects than current drugs, such as paclitaxel (originally called taxol), which mainly act as inhibitors of cell replication.” The operative word here is ‘mainly’. Although many drugs used in traditional chemotherapy act on molecular targets that are in involved in the duplication of cells (during a phase known as ‘mitosis’), these targets also have other cellular functions. Ndc80, on the other hand, performs its job only during mitosis.

So, by blocking Ndc80, the only cells that would be affected would be the dividing ones. Any other cells would be unaffected. Musacchio and his colleagues (together with co-author Peter De Wulf and his research team) are already testing a number of substances that might be able to block the action of Ndc80. The published findings were a truly international effort involving research groups from England and the USA; much of the work was made possible thanks to financial support from the Italian Association for Cancer Research (AIRC).

MITOSIS AND CHEMOTHERAPY TREATMENT FOR CANCER

“We’ve been studying the mechanisms that regulate accurate genome duplication for many years now – explains Musacchio. Our hope is to discover new, less toxic drugs for chemotherapy. Cancer cells grow at a much faster rate than normal cells and traditional chemotherapy drugs, like paclitaxel, block this cell division process. The efficacy of these drugs depends on differences in the growth rates of normal and cancer cells. This means that paclitaxel is toxic for all cells undergoing mitosis; however, since most mitotic cells in cancer patients are actually cancer cells, it follows that this drug will do most of its damage in cancer cells. The problem is that paclitaxel acts on proteins that are essential not only for cells to divide, but also for other phases of the cell cycle. This means that the drug has significant associated toxicity, something we would rather avoid. We had hypothesized that Ndc80 was only active during cell division, which is why we thought it might be an interesting target to study. And our results proved us right. We discovered that Ndc80 acts as a kind of molecular lasso that tethers chromosomes to the mitotic spindle, a molecular structure that only forms during mitosis. Ndc80 straps chromosomes firmly onto the spindle until the dividing cells separate; after this stage, it is of no more use to the cell. So, if we interfere with Ndc80, we can significantly reduce the so-called ‘toxicity window’.” Any drug that inhibits the function of Ndc80 would therefore be much more tumor-specific than currently available treatments. “Peter De Wulf and I – continues Musacchio – have already flagged some interesting molecules. Our in vitro work now needs to be validated in vivo, first in laboratory models, and then in standard clinical trials.”

CHANGING STRATEGY: FROM THERAPEUTIC TARGETS TO THERAPEUTIC DRUGS

Musacchio and colleagues have made an important step forward in understanding the molecular workings of normal and cancer cells. This work is the starting point for the development of new drugs. But, as this scientist points out, the expertise needed to achieve this latter step is sorely lacking in Italian academic research environments. “The development of new drugs – explains Musacchio – depends on the mutual interaction of Chemists and Biologists. Italian academic research still hasn’t capitalized on this, and academia limits itself to the identification of therapeutic targets. While this is a necessary and important step, the development of new drugs is left in the hands of the large pharmaceutical companies.”

This situation is unacceptable. Italian academic research (which is, by definition free, and not profit-led) can – and should – also focus on screening for molecules that can interact with newly-identified targets to inhibit them. To add insult to injury, such compounds are often neglected by pharmaceutical companies, when they do not fall within their production strategies. Musacchio and De Wulf’s strategy in their hunt for molecules that can inhibit Ndc80, exemplifies what needs to be done. But, unfortunately, their approach is not commonly adopted in Italy, and the gap between basic and translational or applied research grows ever wider. Musacchio uses a vivid metaphor to describe the situation: “We discover mountains to climb, but we don’t have the equipment needed to guarantee the success of our expeditions”. We shouldn’t underestimate the value of the collections of compounds hidden away in academic chemistry laboratories; these could be made publicly available. Mussacchio concludes: “A contribution of this kind would be invaluable for international research and a crowning achievement for our Nation”.

AN INTERNATIONAL COLLABORATION

The findings are the result of a collaborative effort between the IFOM-IEO Campus and the University of North Carolina (USA), Colorado State University (USA), the Sir William Dunn School of Pathology (UK), the Wellcome Trust Centre for Cell Biology at the University of Edinburgh (UK) and the University of London (UK). The research was funded not only by AIRC, but also by the International Association for Cancer Research, the Telethon Foundation and the Italian Ministry of Health.

Francesca Noceti | alfa
Further information:
http://www.ifom-ieo-campus.it/

Further reports about: Musacchio Ndc80 Paclitaxel Protein chemotherapy chromosomes lasso toxic

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>