Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chromosome “lassoing”: A new key mechanism in cell division

Scientists at the IFOM-IEO Campus have revealed the function of a protein that is indispensable for passing on an accurate copy of the genome from mother to daughter cells. This study, published in Cell, opens up new avenues of research to reduce the toxicity of chemotherapy in the treatment of cancer.

The protein can be compared to a cowboy’s lasso: it catches chromosomes and ties them to a transitory structure assembled during cell division. Once they have been neatly tied up, the chromosomes await the end of replication to be equally distributed between the two daughter cells.

But if the lasso doesn’t catch them, chromosomes end up being randomly scattered, with potentially disastrous genetic effects: should cells survive this, they receive the wrong genetic inheritance, with dire consequences. The structure and function of this chromosomal lasso were discovered in Milan, at the IFOM-IEO Campus (that hosts the laboratories of the FIRC Institute of Molecular Oncology Foundation – IFOM – and of the European Institute of Oncology – IEO) and these findings have just been published in the prestigious scientific journal, Cell.

“We’ve been studying a molecule called Ndc80 – explains Andrea Musacchio, principal author of the study, and head of a research group in the Department of Experimental Oncology (IEO). This protein is a key player necessary for the correct distribution of genetic inheritance. Ndc80 could potentially be used as a target for new drugs that would have fewer toxic side-effects than current drugs, such as paclitaxel (originally called taxol), which mainly act as inhibitors of cell replication.” The operative word here is ‘mainly’. Although many drugs used in traditional chemotherapy act on molecular targets that are in involved in the duplication of cells (during a phase known as ‘mitosis’), these targets also have other cellular functions. Ndc80, on the other hand, performs its job only during mitosis.

So, by blocking Ndc80, the only cells that would be affected would be the dividing ones. Any other cells would be unaffected. Musacchio and his colleagues (together with co-author Peter De Wulf and his research team) are already testing a number of substances that might be able to block the action of Ndc80. The published findings were a truly international effort involving research groups from England and the USA; much of the work was made possible thanks to financial support from the Italian Association for Cancer Research (AIRC).


“We’ve been studying the mechanisms that regulate accurate genome duplication for many years now – explains Musacchio. Our hope is to discover new, less toxic drugs for chemotherapy. Cancer cells grow at a much faster rate than normal cells and traditional chemotherapy drugs, like paclitaxel, block this cell division process. The efficacy of these drugs depends on differences in the growth rates of normal and cancer cells. This means that paclitaxel is toxic for all cells undergoing mitosis; however, since most mitotic cells in cancer patients are actually cancer cells, it follows that this drug will do most of its damage in cancer cells. The problem is that paclitaxel acts on proteins that are essential not only for cells to divide, but also for other phases of the cell cycle. This means that the drug has significant associated toxicity, something we would rather avoid. We had hypothesized that Ndc80 was only active during cell division, which is why we thought it might be an interesting target to study. And our results proved us right. We discovered that Ndc80 acts as a kind of molecular lasso that tethers chromosomes to the mitotic spindle, a molecular structure that only forms during mitosis. Ndc80 straps chromosomes firmly onto the spindle until the dividing cells separate; after this stage, it is of no more use to the cell. So, if we interfere with Ndc80, we can significantly reduce the so-called ‘toxicity window’.” Any drug that inhibits the function of Ndc80 would therefore be much more tumor-specific than currently available treatments. “Peter De Wulf and I – continues Musacchio – have already flagged some interesting molecules. Our in vitro work now needs to be validated in vivo, first in laboratory models, and then in standard clinical trials.”


Musacchio and colleagues have made an important step forward in understanding the molecular workings of normal and cancer cells. This work is the starting point for the development of new drugs. But, as this scientist points out, the expertise needed to achieve this latter step is sorely lacking in Italian academic research environments. “The development of new drugs – explains Musacchio – depends on the mutual interaction of Chemists and Biologists. Italian academic research still hasn’t capitalized on this, and academia limits itself to the identification of therapeutic targets. While this is a necessary and important step, the development of new drugs is left in the hands of the large pharmaceutical companies.”

This situation is unacceptable. Italian academic research (which is, by definition free, and not profit-led) can – and should – also focus on screening for molecules that can interact with newly-identified targets to inhibit them. To add insult to injury, such compounds are often neglected by pharmaceutical companies, when they do not fall within their production strategies. Musacchio and De Wulf’s strategy in their hunt for molecules that can inhibit Ndc80, exemplifies what needs to be done. But, unfortunately, their approach is not commonly adopted in Italy, and the gap between basic and translational or applied research grows ever wider. Musacchio uses a vivid metaphor to describe the situation: “We discover mountains to climb, but we don’t have the equipment needed to guarantee the success of our expeditions”. We shouldn’t underestimate the value of the collections of compounds hidden away in academic chemistry laboratories; these could be made publicly available. Mussacchio concludes: “A contribution of this kind would be invaluable for international research and a crowning achievement for our Nation”.


The findings are the result of a collaborative effort between the IFOM-IEO Campus and the University of North Carolina (USA), Colorado State University (USA), the Sir William Dunn School of Pathology (UK), the Wellcome Trust Centre for Cell Biology at the University of Edinburgh (UK) and the University of London (UK). The research was funded not only by AIRC, but also by the International Association for Cancer Research, the Telethon Foundation and the Italian Ministry of Health.

Francesca Noceti | alfa
Further information:

Further reports about: Musacchio Ndc80 Paclitaxel Protein chemotherapy chromosomes lasso toxic

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>