Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The cooperative view: New evidence suggests a symbiogenetic origin for the centrosome

There are two ways in which cooperation is the theme of a paper published this week by Mark Alliegro and Mary Anne Alliegro, scientists at the Marine Biological Laboratory’s (MBL) Josephine Bay Paul Center.

One is revealed in the paper’s acknowledgements, where the Alliegros thank those who helped them after Hurricane Katrina completely disrupted their laboratory at Louisiana State University (LSU) in New Orleans – and their lives – in 2005.

The second is the paper’s scientific theme: the origin of the centrosome, a component of animal cells that functions in cell division. In their paper, published in Proceedings of the National Academy of Sciences, the Alliegros give evidence that the centrosome evolved through symbiogenesis – in which previously independent organisms fuse, become mutually dependent, and over time, become a single composite organism — rather than by the evolutionary process of random, heritable mutations and natural selection.

The Alliegros moved to the MBL permanently in September 2007, after two years of attempting to forge on in a devastated New Orleans. “We realized, if we stayed there, our research program would not survive,” says Mark Alliegro, who was a professor at LSU Health Sciences Center.

... more about:
»Alliegro »Origin »RNA »centrosome »genes

The origin of the centrosome, their paper points out, has been controversial for many years. The theory of symbiogenesis as a mechanism of evolution has also stirred debate since it was introduced in the 1920s and subsequently elaborated in the 1960s by Lynn Margulis of University of Massachusetts, Amherst. Today, only two cellular components – the mitochondria and the chloroplasts – are generally accepted by evolutionary biologists as having a symbiogenetic origin. The Alliegros’ paper suggests that centrosomes are another likely candidate.

They base their argument on evidence that the centrosomes, which they obtained from the eggs of the surf clam Spisula, contain RNA that is likely a remnant of a once-independent, simpler genome that was incorporated by symbiosis.

“Most animal genes have introns, regions that are transcribed into RNA but then spliced out,” says Alliegro. “But if you look at viral genes or bacterial genes, they have little or no introns. It turns out the genes for Spisula centrosomal RNAs have few or no introns. They are a special set of RNAs that derived from intron-poor or intron-less genes, which may very well support the idea that they come from a simpler organism, like a virus or bacteria.”

The Alliegros lost their RNA library due to Katrina, and in their paper they acknowledge Gloria Giarratano of LSU Health Sciences Center, who helped them re-clone the library from DNA they recovered in the hurricane’s aftermath. They also thank Bruce and Sharon Waddell of Slidell, Louisiana, in whose home they lived after Katrina, and where “our laboratory was resurrected in part from the dining room table”; as well as Carol Burdsal and other colleagues at Tulane University, where they temporarily set up a new lab.

Robert Palazzo of Rensselaer Polytechnic Institute, a longtime visiting investigator at the MBL, is acknowledged for providing the centrosome preparation for the original RNA extractions as well as advice and encouragement. This work was supported by the National Institutes of Health as well as post-Katrina emergency recovery funds from the Society for Developmental Biology.

Diana Kenney | EurekAlert!
Further information:

Further reports about: Alliegro Origin RNA centrosome genes

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>