Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify interacting proteins key to melanoma development, treatment

08.05.2008
Researchers have discovered how a mole develops into melanoma by showing the interaction of two key proteins involved in 60-70 percent of tumors. The Penn State scientists also demonstrate that therapeutic targeting of these proteins is necessary for drugs to effectively treat this deadly form of cancer.

"We have shown that when two proteins – (V600E)B-Raf and Akt3 – communicate with one another in a mole, they cooperate leading to the development of melanoma," said Gavin Robertson, lead author and associate professor of pharmacology, pathology and dermatology, and director of the Foreman Foundation Melanoma Therapeutics Program at the Penn State College of Medicine Cancer Institute. "We have also shown that effective therapies for melanoma need to target both these proteins, which essentially eliminates the tumors.”

Melanoma is the most deadly form of skin cancer because it metastasizes or moves around the body so quickly. In general, people with advanced-stage disease only have months to live. Currently, melanoma kills one person every hour in the U.S., and is predicted to affect one in 50 people by 2010. In recent years, researchers have zeroed in on two key genes – B-Raf and Akt3 – that cause this deadly cancer, and which could be important targets in the treatment of melanoma.

B-Raf is the most mutated gene in melanoma. The mutant protein, (V600E)B-Raf, produced by this gene is important in helping mole cells survive and grow but it is unable to form melanomas on its own. Nearly 90 percent of all moles have the mutant protein but it is not fully clear why only some of them turn into melanomas.

... more about:
»Akt3 »B-Raf »Key »Mutant »Protein »Robertson »Treatment »melanoma »mole

Robertson and his colleagues have found that a second protein – produced by Akt3 – regulates the activity of the mutated B-Raf, which aids the development of melanoma.

"What we have found is a second event that is necessary for melanomas to develop," added Robertson, whose findings are reported in the May 1 issue of the journal Cancer Research.

While comparing proteins within normal moles and human melanoma cells, the Penn State researchers noticed that the two proteins were communicating with one another only among melanoma cells but not among normal cells.

When the Akt3 protein was put into cells in conjunction with the mutant B-Raf gene, they were better able to form melanomas compared to cells just containing the mutant B-Raf gene.

"This tells us that you can have a mole but it cannot turn into melanoma without the presence of the Akt3 protein," explained Robertson.

While it is still unclear what brings the B-Raf and Akt3 proteins together, the Penn State researchers say they now have a better understanding of how these two proteins interact to cause melanoma.

The initial mutation of the B-Raf gene helps to create moles, but high levels of B-Raf activity due to the mutation prevents the cells from becoming a melanoma. It is only when the Akt3 protein is present in those cells and communicates with B-Raf that it lower its activity, thereby creating favorable conditions within the mole for cells to multiply, and allow them to turn into a melanoma.

Robertson said the discovery could pave the way for newer and more effective treatments for melanoma.

"We have shown that if we target the two proteins separately, it somewhat inhibits the development of tumors but if we target them together, the development of tumors gets inhibited significantly," he added. "It validates these proteins as key targets for effective melanoma therapy."

Robertson envisions that future physicians could look at blood samples from melanoma patients containing melanoma cells and determine whether the two proteins are in their cells. The patients could then receive drugs that target these proteins to more effectively treat their disease. It would be personalized cancer treatment that would be more effective and less toxic with fewer side effects, the Penn State researcher explained.

"In the search for a cure for melanoma, we are now closer because we know that we need to target these two proteins in order to have a dramatic impact on the development of melanoma," Robertson added.

For patients, this means that in the future, some new drug could target these proteins to treat advanced disease or be added to sunscreen lotion, for instance, that would prevent Akt3 functioning in the cell. It would not only help control a tumor, but also prevent one as well.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Akt3 B-Raf Key Mutant Protein Robertson Treatment melanoma mole

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>