Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms triple sperm transfer when paternity is at risk

08.05.2008
Scientists used to think that hermaphrodites, due to their low position in the evolutionary scale, did not have sufficiently developed sensory systems to assess the “quality” of their mates. A new work has shown, however, that earthworms are able to detect the competition by fertilising the eggs that is going to find its sperm, tripling its volume when there is rivalry. This ability is even more refined as they are able to transfer more sperm to more fertile partners.

Hermaphrodites, organisms that have both female and male reproductive organs, such as earthworms, are denied the right to choose their partner. However, a study by researchers at the University of Vigo has shown that worms are capable of telling whether another worm is a virgin or not, and triple the volume of sperm transferred during copulation if they detect a fertilisation competition risk.

According to the study, which appears in the latest edition of the magazine Proceedings of Royal Society B-Biological Sciences, the partner’s assessment ability, which has often been considered incompatible with invertebrates, is a firm characteristic of worms when their sperm is competing for fertilisation. Authors of the study explained to SINC that “in high sperm competition situations, partner assessment is subject to strong selection in hermaphrodites, making these organisms very selective when choosing to whom and how much sperm to transfer”.

In total, scientists analysed 42 mature and virgin worms, allowing researchers to reach their conclusions. When worms detect a risk of their sperm competing with their rivals, these invertebrates are able to determine whether their partners have copulated previously, in which case they increase the volume of sperm donated. “This increase is even higher when worms mate with much larger partners, as they are more fertile”, explains Jorge Domínguez, one of the authors of the study.

Worms control their sperm volume

Thanks to the double mating experiment carried out by the scientists, the results show that worms have a refined control over the volume of sperm transferred during copulation according to the sex of the partner they are mating with. The advantage of donating such amounts of sperm is due to the highly competitive environment in which these hermaphrodites live.

Multiple mating is common amongst worms and the reason why they have developed specific strategies to deal with strong sperm competition in fertilisation. Researchers suggest that “sperm competition in fertilisation is an evolutionary force which has affected worm mating behaviour”.

Worm courting can last up to an hour during which time the organisms secrete large amounts of mucus and press against each other with short, repetitive rubbing actions for subsequent exchange of sperm. If there is no fertilisation competition, worms are prudent in how much sperm they release, even waiting to mate with high-quality partners. “Worms can control copulation time or, alternatively, can have mechanisms which prevent all their sperm being released in a single mating event”, stress the authors.

The results of the study conclude that the volume of sperm donated to worms that are not virgins has been more variable than that transferred to virgin partners. In this respect, researchers estimated that the volume transferred to larger size partners which had previously copulated was five times greater than that transferred to virgin worms.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Competition fertilisation mating sperm transferred volume

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>