Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms triple sperm transfer when paternity is at risk

08.05.2008
Scientists used to think that hermaphrodites, due to their low position in the evolutionary scale, did not have sufficiently developed sensory systems to assess the “quality” of their mates. A new work has shown, however, that earthworms are able to detect the competition by fertilising the eggs that is going to find its sperm, tripling its volume when there is rivalry. This ability is even more refined as they are able to transfer more sperm to more fertile partners.

Hermaphrodites, organisms that have both female and male reproductive organs, such as earthworms, are denied the right to choose their partner. However, a study by researchers at the University of Vigo has shown that worms are capable of telling whether another worm is a virgin or not, and triple the volume of sperm transferred during copulation if they detect a fertilisation competition risk.

According to the study, which appears in the latest edition of the magazine Proceedings of Royal Society B-Biological Sciences, the partner’s assessment ability, which has often been considered incompatible with invertebrates, is a firm characteristic of worms when their sperm is competing for fertilisation. Authors of the study explained to SINC that “in high sperm competition situations, partner assessment is subject to strong selection in hermaphrodites, making these organisms very selective when choosing to whom and how much sperm to transfer”.

In total, scientists analysed 42 mature and virgin worms, allowing researchers to reach their conclusions. When worms detect a risk of their sperm competing with their rivals, these invertebrates are able to determine whether their partners have copulated previously, in which case they increase the volume of sperm donated. “This increase is even higher when worms mate with much larger partners, as they are more fertile”, explains Jorge Domínguez, one of the authors of the study.

Worms control their sperm volume

Thanks to the double mating experiment carried out by the scientists, the results show that worms have a refined control over the volume of sperm transferred during copulation according to the sex of the partner they are mating with. The advantage of donating such amounts of sperm is due to the highly competitive environment in which these hermaphrodites live.

Multiple mating is common amongst worms and the reason why they have developed specific strategies to deal with strong sperm competition in fertilisation. Researchers suggest that “sperm competition in fertilisation is an evolutionary force which has affected worm mating behaviour”.

Worm courting can last up to an hour during which time the organisms secrete large amounts of mucus and press against each other with short, repetitive rubbing actions for subsequent exchange of sperm. If there is no fertilisation competition, worms are prudent in how much sperm they release, even waiting to mate with high-quality partners. “Worms can control copulation time or, alternatively, can have mechanisms which prevent all their sperm being released in a single mating event”, stress the authors.

The results of the study conclude that the volume of sperm donated to worms that are not virgins has been more variable than that transferred to virgin partners. In this respect, researchers estimated that the volume transferred to larger size partners which had previously copulated was five times greater than that transferred to virgin worms.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Competition fertilisation mating sperm transferred volume

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>