Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Platypus genome sequence published

08.05.2008
Platypus genetic blueprint reveals the early history of mammals

UK-based researchers at the Medical Research Council Functional Genomics Unit in Oxford and the European Molecular Biology Laboratory’s European Bioinformatics Institute in Cambridge have revealed the genetic makeup of the one of the world’s strangest mammals.

They have analysed the DNA blueprint of the platypus, one of only a few surviving monotremes which, of all mammals, are the most distantly-related to humans. The platypus, a female nicknamed Glennie, was sequenced by scientists at the Genome Sequencing Centre of Washington University School of Medicine, USA as part of an international research collaboration including scientists

from the UK and Australia. The analysis is published in the 8 May issue of Nature.

... more about:
»Genome »mammals »sequence »venom

The platypus is thought to have diverged from a common ancestor shared with humans approximately 170 million years ago. The species has many features that are unique to mammals; for example it has fur and rears its young on milk.

However, it also shows reptile-like characteristics; the females lay eggs and the males produce venom. Some features, such as a specialised system in the platypus bill that uses electricity to detect food under water (electro-reception), are unique to monotremes. The researchers found that these diverse characteristics are mirrored by a patchwork of genes resembling those from reptiles, birds and other mammals.

Lead researcher Chris Ponting from the MRC Functional Genomics Unit at the University of Oxford said “The platypus genome is extremely important because it is the missing link in our understanding of how we and other mammals first evolved.

This is our ticket back in time to when all mammals laid eggs while suckling their young on milk. It also provides an essential background to future advances in understanding mammalian biology and evolution.”

The researchers searched the genome for DNA sequences that are unique to the monotremes, as well as those known to be involved in venom production, electro-reception and milk production in other species. They discovered that platypus venom is a cocktail of proteins that originally had very different functions. Amazingly, the same proteins are found in reptile venom even though platypus and snake venom evolved independently. They also found that the platypus has many more sex chromosomes – the organised structures into which DNA is packed that determine sex – than do humans.

The platypus has ten sex chromosomes, compared with our two. Furthermore, the gene sequences responsible for determining sex are more similar to those in birds than in mammals. Ewan Birney, who led the genome analysis performed at the European Bioinformatics Institute, commented “The platypus looks like such a strange blend of mammalian, bird-like and reptilian features and now we know that the genome is an equally bizarre mix of all of these. It’s much more of a mélange than anyone expected.”

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/downloads/press_release.html

Further reports about: Genome mammals sequence venom

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>