Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Platypus genome sequence published

08.05.2008
Platypus genetic blueprint reveals the early history of mammals

UK-based researchers at the Medical Research Council Functional Genomics Unit in Oxford and the European Molecular Biology Laboratory’s European Bioinformatics Institute in Cambridge have revealed the genetic makeup of the one of the world’s strangest mammals.

They have analysed the DNA blueprint of the platypus, one of only a few surviving monotremes which, of all mammals, are the most distantly-related to humans. The platypus, a female nicknamed Glennie, was sequenced by scientists at the Genome Sequencing Centre of Washington University School of Medicine, USA as part of an international research collaboration including scientists

from the UK and Australia. The analysis is published in the 8 May issue of Nature.

... more about:
»Genome »mammals »sequence »venom

The platypus is thought to have diverged from a common ancestor shared with humans approximately 170 million years ago. The species has many features that are unique to mammals; for example it has fur and rears its young on milk.

However, it also shows reptile-like characteristics; the females lay eggs and the males produce venom. Some features, such as a specialised system in the platypus bill that uses electricity to detect food under water (electro-reception), are unique to monotremes. The researchers found that these diverse characteristics are mirrored by a patchwork of genes resembling those from reptiles, birds and other mammals.

Lead researcher Chris Ponting from the MRC Functional Genomics Unit at the University of Oxford said “The platypus genome is extremely important because it is the missing link in our understanding of how we and other mammals first evolved.

This is our ticket back in time to when all mammals laid eggs while suckling their young on milk. It also provides an essential background to future advances in understanding mammalian biology and evolution.”

The researchers searched the genome for DNA sequences that are unique to the monotremes, as well as those known to be involved in venom production, electro-reception and milk production in other species. They discovered that platypus venom is a cocktail of proteins that originally had very different functions. Amazingly, the same proteins are found in reptile venom even though platypus and snake venom evolved independently. They also found that the platypus has many more sex chromosomes – the organised structures into which DNA is packed that determine sex – than do humans.

The platypus has ten sex chromosomes, compared with our two. Furthermore, the gene sequences responsible for determining sex are more similar to those in birds than in mammals. Ewan Birney, who led the genome analysis performed at the European Bioinformatics Institute, commented “The platypus looks like such a strange blend of mammalian, bird-like and reptilian features and now we know that the genome is an equally bizarre mix of all of these. It’s much more of a mélange than anyone expected.”

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/downloads/press_release.html

Further reports about: Genome mammals sequence venom

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>