Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Scientists Report Fast, Simple Method of Generating "Designer" RNA Catalysts for Proteomics

01.07.2002


Artificial "Sugazyme" catalyzes synthesis of novel proteins with special features

University at Buffalo chemists have developed a remarkably simple and effective biotechnological method for synthesis of novel proteins using amino acids that do not occur in nature by using unique, programmable ribozymes (enzymes made of RNA, or ribonucleic acid) that they evolved in the lab.

The technology, described in the July issue of Nature Biotechnology, provides a potentially important new tool in the field of proteomics, where scientists are working to understand all of the proteins that have been identified through the human genome project.



A related technology was described in a paper published by the researchers in the June 19 issue of the Journal of the American Chemical Society.

The researchers, from the Department of Chemistry in the UB College of Arts and Sciences, are discussing a research and licensing agreement with a company interested in commercializing the technology, for which UB has filed patents.

According to the UB chemists, scientists have been interested in efficiently harnessing the ability to attach unnatural amino acids to proteins since the first demonstration that it could be done, in 1987. Existing methods for doing so have been too complicated and too expensive for routine use in the laboratory.

Named after lead researcher Hiroaki Suga, UB assistant professor of chemistry, the programmable "Sugazyme" provides an efficient and economic shortcut to attachment of tRNA to unnatural amino acids.

The UB method generates the first artificial ribozyme that performs two unique steps that lead to the generation of novel proteins.

First, the Sugazyme is programmed to recognize an engineered (i.e. unnatural) tRNA, as well as various unnatural amino acids. Second, it then operates as a chemical matchmaker, joining the two to create the aminoacylated tRNA, the essential molecule for linking the genetic

code to amino acids, triggering protein synthesis.

"Our system has the potential to provide a simple method for the preparation of such aminoacyl-tRNAs for researchers who want to expand the amino-acid repertoire for protein synthesis," said Suga.

The advantage of using so-called unnatural or non-natural amino acids designed in the lab is that they can be tailored with special functions that are not available in natural amino acids and that will aid researchers working in proteomics.

"In the Nature Biotechnology paper, we demonstrate that we have evolved a ribozyme that has a programmable feature for recognition of any desired tRNAs and that it can charge non-natural amino acids on the specific tRNA," explained Suga, co-author with Yoshitaka Bessho and David R.W. Hodgson, both post-doctoral fellows in the UB Department of Chemistry.

A related technology for engineering similar "designer catalysts" developed by the group and described in detail in the Journal of the American Chemical Society, consists of a few simple steps: The scientists immobilize the ribozyme on an inexpensive gel, pack the resin into a column, add the amino acid and tRNA and shake it for about half an hour.

"When the resin is washed off, what’s left is the aminoacyl-tRNA with the immobilized ribozyme," said Suga. "The desired aminoacyl-tRNA can then be isolated. It’s a very durable and convenient system."

In the lab, the UB researchers have demonstrated that the system also is economical and able to be reused numerous times.

Suga’s co-authors on the paper in the Journal of the American Chemical Society are Hiroshi Murakami, post-doctoral fellow and Neil J. Bonzagni, doctoral candidate, both in the UB Department of Chemistry.

The work was funded by the National Institutes of Health, the National Science Foundation and the Human Frontier Science Program.

Ellen Goldbaum | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>