Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Wnt Signaling Pathway - A Retrospective Look at 25 Years of Research

07.05.2008
Over the past years, biologists have gained ever deeper insights into the biochemical and molecular networks regulating the development of living beings, from the fertilized egg to complete organisms containing billions of cells and different organs.

Interestingly, only a handful of signaling pathways control this complex development. These pathways act in synergy with each other to prevent maldevelopment or tumor formation.

One of the most thoroughly researched signaling pathways is the Wnt signaling pathway, which was first characterized 25 years ago. Walter Birchmeier, a cell biologist of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch who has done important research in this field, and Alexandra Klaus, a PhD student from his research group, have written an article describing the major milestones that have substantially contributed to scientists' understanding of the Wnt signaling system. Their review has now been published in the current issue of Nature Reviews Cancer (Vol. 8, Nr. 5, pp. 387 - 398)*.

In 1982, Roel Nusse (now at Stanford University, CA, USA) and Harold Varmus (now at Memorial Sloan-Kettering Cancer Center, New York City, NY, USA) discovered Int1, the first gene of the Wnt signaling pathway. They found that this gene, when artificially activated in the mouse model, induces mammary gland tumors. At about the same time, Christiane Nüsslein-Volhard, who was later awarded the Nobel Prize and is now working at the Max Planck Institute for Developmental Biology in Tübingen, discovered that the fruit fly Drosophila melanogaster did not develop wings when the gene Wingless (Wg) was lacking. As it turned out, Int1, the mouse mammary oncogene that Nusse had discovered, was found to be identical to Wingless in Drosophila. Nusse then suggested a new nomenclature, combining Wingless (Wg) and Int1 to form the name Wnt. Since then, researchers have discovered more than 100 additional genes that play a role in the Wnt signaling pathway.

... more about:
»APC »Development »Stem »Wnt »activate »pathway »prevent

Wnt signals conserve stem cell reservoir

In the healthy cell, the Wnt signal activates a complicated signal cascade, the mechanisms of which are still not completely understood. Researchers know that the signal penetrates into the cell nucleus, the control center of the cell, and activates gene expression there. However, the Wnt signaling pathway is not only active during development from the embryo to the mature organism, but also in stem cells. Stem cells form the reservoir for replenishing those cells that are continuously turned over in the body, for example blood and skin cells. Wnt signals keep these cells from prematurely specializing into specific cells. Thus, a functioning Wnt signaling prevents the stem cell reservoir from "drying up".

Cancer due to misregulation of signaling pathways

In 1993, different researchers, including Bert Vogelstein and Kenneth Kinzler (both now at Johns Hopkins University in Baltimore, USA), discovered a link between the Wnt signaling pathway and the development of cancer. At that time, it was known that a mutation of the APC gene induces colon cancer. The new discovery, however, was that APC influences one of the key role players (ß-catenin) of the Wnt signaling pathway. Normally, the APC gene is active, ß-catenin is degraded and the Wnt signaling pathway is inhibited. However, a mutation of the APC gene prevents ß-catenin degradation. As a result, ß-catenin is able to penetrate the cell nucleus and activate certain ß-catenin genes which should be turned off in adult cells and, hence, tumors form. This process is considered to be the initial step in colon carcinogenesis.

The Wnt signaling pathway also plays a role in so-called cancer stem cells (CSCs). Many scientists suspect that tumorigenesis is associated with these cells. Cancer stem cells assume many of the characteristics of stem cells by activating programs the body used during embryonic development - for example, the Wnt signaling pathway. Jörg Hülsken, who now works at the Swiss Cancer Research Institute in Lausanne and was a former colleague of Walter Birchmeier, recently demonstrated that ß-catenin maintains the stem cell characteristics of skin cancer cells. "Since the Wnt signaling pathway does not play an important role in healthy skin cells," Walter Birchmeier said, "it might provide a possible drug target for fighting cancer stem cells."

In addition to cancer, other diseases can also develop due to a misactivation of the Wnt signaling pathway. For example, individual components of the signaling pathway can contribute to the development of heart and eye diseases, Alzheimer's disease, or schizophrenia.

"In the next 25 years, we want to identify further components of the Wnt signaling pathway and gain better insight into how these interact with each other," Alexandra Klaus explained. In the future, this research could lead to new drugs which block the Wnt signaling pathway. "However, since stem cells need this pathway, too," she pointed out, "this is not as easy as one might expect."

*Wnt signalling and its impact on development and cancer

Alexandra Klaus1 and Walter Birchmeier1

1Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/de/news
http://www.nature.com/nrc/index.html
http://www.nature.com/nature/journal/v452/n7187/abs/nature06835.html

Further reports about: APC Development Stem Wnt activate pathway prevent

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>