Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Wnt Signaling Pathway - A Retrospective Look at 25 Years of Research

07.05.2008
Over the past years, biologists have gained ever deeper insights into the biochemical and molecular networks regulating the development of living beings, from the fertilized egg to complete organisms containing billions of cells and different organs.

Interestingly, only a handful of signaling pathways control this complex development. These pathways act in synergy with each other to prevent maldevelopment or tumor formation.

One of the most thoroughly researched signaling pathways is the Wnt signaling pathway, which was first characterized 25 years ago. Walter Birchmeier, a cell biologist of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch who has done important research in this field, and Alexandra Klaus, a PhD student from his research group, have written an article describing the major milestones that have substantially contributed to scientists' understanding of the Wnt signaling system. Their review has now been published in the current issue of Nature Reviews Cancer (Vol. 8, Nr. 5, pp. 387 - 398)*.

In 1982, Roel Nusse (now at Stanford University, CA, USA) and Harold Varmus (now at Memorial Sloan-Kettering Cancer Center, New York City, NY, USA) discovered Int1, the first gene of the Wnt signaling pathway. They found that this gene, when artificially activated in the mouse model, induces mammary gland tumors. At about the same time, Christiane Nüsslein-Volhard, who was later awarded the Nobel Prize and is now working at the Max Planck Institute for Developmental Biology in Tübingen, discovered that the fruit fly Drosophila melanogaster did not develop wings when the gene Wingless (Wg) was lacking. As it turned out, Int1, the mouse mammary oncogene that Nusse had discovered, was found to be identical to Wingless in Drosophila. Nusse then suggested a new nomenclature, combining Wingless (Wg) and Int1 to form the name Wnt. Since then, researchers have discovered more than 100 additional genes that play a role in the Wnt signaling pathway.

... more about:
»APC »Development »Stem »Wnt »activate »pathway »prevent

Wnt signals conserve stem cell reservoir

In the healthy cell, the Wnt signal activates a complicated signal cascade, the mechanisms of which are still not completely understood. Researchers know that the signal penetrates into the cell nucleus, the control center of the cell, and activates gene expression there. However, the Wnt signaling pathway is not only active during development from the embryo to the mature organism, but also in stem cells. Stem cells form the reservoir for replenishing those cells that are continuously turned over in the body, for example blood and skin cells. Wnt signals keep these cells from prematurely specializing into specific cells. Thus, a functioning Wnt signaling prevents the stem cell reservoir from "drying up".

Cancer due to misregulation of signaling pathways

In 1993, different researchers, including Bert Vogelstein and Kenneth Kinzler (both now at Johns Hopkins University in Baltimore, USA), discovered a link between the Wnt signaling pathway and the development of cancer. At that time, it was known that a mutation of the APC gene induces colon cancer. The new discovery, however, was that APC influences one of the key role players (ß-catenin) of the Wnt signaling pathway. Normally, the APC gene is active, ß-catenin is degraded and the Wnt signaling pathway is inhibited. However, a mutation of the APC gene prevents ß-catenin degradation. As a result, ß-catenin is able to penetrate the cell nucleus and activate certain ß-catenin genes which should be turned off in adult cells and, hence, tumors form. This process is considered to be the initial step in colon carcinogenesis.

The Wnt signaling pathway also plays a role in so-called cancer stem cells (CSCs). Many scientists suspect that tumorigenesis is associated with these cells. Cancer stem cells assume many of the characteristics of stem cells by activating programs the body used during embryonic development - for example, the Wnt signaling pathway. Jörg Hülsken, who now works at the Swiss Cancer Research Institute in Lausanne and was a former colleague of Walter Birchmeier, recently demonstrated that ß-catenin maintains the stem cell characteristics of skin cancer cells. "Since the Wnt signaling pathway does not play an important role in healthy skin cells," Walter Birchmeier said, "it might provide a possible drug target for fighting cancer stem cells."

In addition to cancer, other diseases can also develop due to a misactivation of the Wnt signaling pathway. For example, individual components of the signaling pathway can contribute to the development of heart and eye diseases, Alzheimer's disease, or schizophrenia.

"In the next 25 years, we want to identify further components of the Wnt signaling pathway and gain better insight into how these interact with each other," Alexandra Klaus explained. In the future, this research could lead to new drugs which block the Wnt signaling pathway. "However, since stem cells need this pathway, too," she pointed out, "this is not as easy as one might expect."

*Wnt signalling and its impact on development and cancer

Alexandra Klaus1 and Walter Birchmeier1

1Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/de/news
http://www.nature.com/nrc/index.html
http://www.nature.com/nature/journal/v452/n7187/abs/nature06835.html

Further reports about: APC Development Stem Wnt activate pathway prevent

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>