Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common herbicide disrupts human hormone activity in cell studies

07.05.2008
A common weedkiller in the U.S., already suspected of causing sexual abnormalities in frogs and fish, has now been found to alter hormonal signaling in human cells, scientists from the University of California San Francisco (UCSF) report.

The herbicide atrazine is the second most widely used weedkiller in the U.S., applied to corn and sorghum fields throughout the Midwest and also spread on suburban lawns and gardens. It was banned in Europe after studies linked the chemical to endocrine disruptions in fish and amphibians.

The UCSF study is the first to identify its full effect on human cells. It is being reported in the May 7 issue of the journal “PLoS ONE.”

In studies with human placental cells in culture, the UCSF scientists found that atrazine increased the activity of a gene associated with abnormal human birth weight when over-expressed in the placenta. Atrazine also targeted a second gene that has been found to be amplified in the uterus of women with unexplained infertility.

... more about:
»Endocrine »Human »Steroid »UCSF »atrazine »enzyme »hormone »sensitive

In parallel studies of zebrafish, a widely used animal in development studies, the research team showed that atrazine “feminized” the fish population – increasing the proportion of fish that developed into females. In water with atrazine concentrations comparable to those found in runoff from agricultural fields, the proportion of female fish increased two-fold. Environmental factors are known to influence the sex of zebrafish and many other fish and amphibians as they develop.

“These fish are very sensitive to endocrine disrupting chemicals, so one might think of them as ‘sentinels’ to potential developmental dangers in humans,” said Holly Ingraham, PhD, senior author on the study and a UCSF Professor of Cellular and Molecular Pharmacology. “These atrazine- sensitive genes are central to normal reproduction and are found in steroid producing tissues. You have to wonder about the long-term effects of exposing the rapidly developing fetus to atrazine or other endocrine disruptors.”

Ingraham intends to determine precisely how atrazine affects human and other mammalian endocrine cells and why these cells are particularly sensitive to it. She notes that bisphenol A, a compound in many hard plastic consumer products, is also an endocrine disrupter and is now under increased study for its safety. In April, Canada announced a decision to ban sale of consumer products with bisphenol A.

The lead author of the study is Miyuki Suzawa, a postdoctoral fellow in Ingraham’s lab.

UCSF researchers exposed sexually immature zebrafish to atrazine and other chemicals for different periods of time. They found that exposure to atrazine for 48 hours at concentrations that might be found in water containing agricultural runoff, produced twice as many female fish.

Through genetic analysis, they found that atrazine preferentially activates a class of receptors in the cell nucleus, including two known as SF-1 and LRH-1. SF-1 regulates production of enzymes involved in the synthesis of steroids in the body and development of many endocrine tissues. One of these enzymes, known as Aromatase, plays a role in determining whether lower vertebrates, such as fish will become male or female. Aromatase is known as a feminizing enzyme.

In the human placental cell culture studies, the scientists found that a 24-hour exposure to atrazine activates a cluster of genes involved in hormone signaling and steroid synthesis.

They report, “Endocrine-related cell types with a capacity for steroid generation appear to be especially sensitive (to Atrazine), as demonstrated by the “exquisite” cellular specificity of the atrazine response.”

The finding that a pervasive and persistent environmental chemical appears to significantly change hormone networks means that scientists must take a broader look at this herbicide’s potential effect on human health, Ingraham said. Up to now, much of the focus has been on breast cancer, but since proper development of the endocrine system is important for normal reproduction, stress responses and metabolism, early exposure to this chemical in a fetus or infant might alter normal physiology later in life, she said.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Endocrine Human Steroid UCSF atrazine enzyme hormone sensitive

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>