Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning fungus into fuel

06.05.2008
Organism with a taste for olive drab shows promise for greener energy

A spidery fungus with a voracious appetite for military uniforms and canvas tents could hold the key to improvements in the production of biofuels, a team of government, academic and industry researchers has announced.

In a paper published today in Nature Biotechnology, researchers led by Los Alamos National Laboratory and the U.S. Department of Energy Joint Genome Institute announced that the genetic sequence of the fungus Tricoderma reesei has uncovered important clues about how the organism breaks down plant fibers into simple sugars.

The finding could unlock possibilities for industrial processes that can more efficiently and cost effectively convert corn, switchgrass and even cellulose-based municipal waste into ethanol. Ethanol from waste products is a more-carbon-neutral alternative to gasoline.

... more about:
»Cellulose »Fuel »enzyme »fungus »reesei

The fungus T. reesei rose to dubious fame during World War II when military leaders discovered it was responsible for rapid deterioration of clothing and tents in the South Pacific. Named after Dr. Elwyn T. Reese, who, with colleagues, originally isolated the hungry fungus, T. reesei was later identified as a source of industrial enzymes and a role model for the conversion of cellulose and hemicellulose—plant fibers—into simple sugars.

The organism uses enzymes it creates to break down human-indigestible fibers of plants into the simplest form of sugar, known as a monosaccharide. The fungus then digests the sugars as food.

Researchers decoded the genetic sequence of T. reesei in an attempt to discover why the deep green fungus was so darned good at digesting plant cells. The sequence results were somewhat surprising. Contrary to what one might predict about the gene content of a fungus that can eat holes in tents, T. reesei had fewer genes dedicated to the production of cellulose-eating enzymes than its counterparts.

“We were aware of T. reesei’s reputation as producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient,” said Los Alamos bioscientist Diego Martinez (also at the University of New Mexico), the study’s lead author. The researchers believe that T. reesei’s genome includes “clusters” of enzyme-producing genes, a strategy that may account for the organism’s efficiency at breaking down cellulose.

On an industrial scale, T. reesei could be employed to secrete enzymes that can be purified and added into an aqueous mixture of cellulose pulp and other materials to produce sugar. The sugar can then be fermented by yeast to produce ethanol.

“The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals,” said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, a collaborating institution in the study. “The information contained in its genome will allow us to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals.”

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

Further reports about: Cellulose Fuel enzyme fungus reesei

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>