Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nixing immaturity in red blood cells

06.05.2008
A process of self-digestion called autophagy prompts the maturation of red blood cells.

Without a protein called Nix, the cells would not effectively rid themselves of organelles called mitochondria and consequently become short-lived, leading to anemia, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Nature.

“It’s changed our thinking on autophagy,” said Dr. Jin Wang, assistant professor of immunology at BCM and senior author of the report. During autophagy, the cell forms an envelope or vesicle around components of the cell that need to be degraded and removed. The vesicle then fuses with a cellular component called a lysosome that degrades its contents. The inclusion of components in the cell by autophagy vesicles was generally considered to be nonspecific.

“This is not a random process,” said Wang. “Nix is instructing the cell to get rid of these mitochondria.”

... more about:
»autophagy »blood »mitochondria

Nix accomplishes this task by disrupting the mitochondrial membrane potential (represented by difference in voltage across the inner membrane of the mitochondria. The interior is negative and the outside positive. The difference generates a force that drives the synthesis of ATP, the cell’s energy molecule).

“We think the finding is not limited to the clearance of mitochondria in red blood cells,” said Wang. “When other cells get old or stressed, their organelles may become damaged and need to be cleared by autophagy for quality control. If the cells lack such quality controls, they might have problems that result in aging, cancer and neurodegenerative diseases.”

“It helps get rid of old or damaged mitochondria,” he said. “It is a way to keep the cell functioning without going through programmed cell death (apoptosis).”

“Such specific regulation of autophagy may also be important for cell types in the muscle, brain and pancreas,” said Dr. Min Chen, assistant professor of immunology at BCM and a corresponding author of this work. “The next step is to identify proteins interacting with Nix for mitochondrial quality control by autophagy”. Other factors may also regulate this process in addition to Nix, said Hector Sandoval, a BCM graduate student who is the first author of this paper.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: autophagy blood mitochondria

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>