Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemists measure chilli sauce hotness with nanotubes

If you can’t stand the heat, get out of the kitchen and into the lab – chemists can now use carbon nanotubes to judge the heat of chilli sauces. The technology might soon be available commercially as a cheap, disposable sensor for use in the food industry.

Richard Compton and his team at Oxford University, UK, have developed a sensitive technique to measure the levels of capsaicinoids, the substances that make chillies hot, in samples of chilli sauce. They report their findings in the Royal Society of Chemistry journal The Analyst.

The current industry procedure is to use a panel of taste-testers, and is highly subjective. Compton’s new method unambiguously determines the precise amount of capsaicinoids, and is not only quicker and cheaper than taste-testers but more reliable for purposes of food standards; tests could be rapidly carried out on the production line.

They tested a range of chilli sauces, from the mild “Tabasco Green Pepper” sauce to “Mad Dog’s Revenge”, which sports an extensive health warning and liability disclaimer.

... more about:
»Nanotube »capsaicinoids »heat »measure »method

The well-established Scoville method – currently the industry standard – involves diluting a sample until five trained taste testers cannot detect any heat from the chilli. The number of dilutions is called the Scoville rating; the relatively mild Jalapeño ranges from around 2500-8000, whereas the hottest chilli in the world, the “Naga Jolokia”, has a rating of 1000000.

High performance liquid chromatography (HPLC) can also be used, but this requires bulky, expensive equipment and detailed analysis of the capsaicinoids.

In Compton’s method, the capsaicinoids are adsorbed onto multi-walled carbon nanotube (MWCNT) electrodes. The team measures the current change as the capsaicinoids are oxidised by an electrochemical reaction, and this reading can be translated into Scoville units.

The technique is called adsorptive stripping voltammetry (ASV), and is a relatively simple electrochemical method. Compton says, “ASV is a fantastic detection technique for capsaicinoids because it’s so simple - it integrates over all of the heat creating constituents because all of the capsaicinoids have essentially the same electrochemical response.”

Compton has applied for a patent on the technology, and Oxford University’s technology transfer subsidiary ISIS Innovation is actively seeking backers to commercialise the technique.

Jon Edwards | alfa
Further information:

Further reports about: Nanotube capsaicinoids heat measure method

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>