Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study reveals how cells communicate to activate the cell division machinery

06.05.2008
A study performed by researchers at the Institute for Research in Biomedicine (IRB Barcelona) on the fruit fly, Drosophila melanogaster, unveils how distinct signaling pathways operate between neighboring cells in order to activate the cell proliferation machinery that results in the organized growth of the fly wing.

The signaling pathways involved in this process are also conserved in humans, and when altered in diverse tissues give rise to the appearance of different types of cancer, including cancer of the colon and skin, and leukemia.

The study has been undertaken in the Cell and Development Biology Laboratory headed by ICREA Research Professor, Marco Milán, at IRB Barcelona, and has been released in and advanced online format by the EMBO Journal.

The researchers have shown that the Notch and Wnt/Wingless signaling pathways exert control over the cell division machinery through two gene effectors, the proto-oncogen dMyc and the micro-RNA bantam. Regulated by Notch and Wnt/Wingless, these two genes instruct another gene, E2F, to activate the cell division machinery.

“All the components were already known but we have clarified the order in the signaling cascade and the interaction between the molecular elements that regulate proliferation for the correct development of the wing”, explains Héctor Herranz, first author of the article.

Marco Milán: “Diseases like cancer cannot be understood without taking into account how the distinct molecular elements are integrated”.

Notch and Wnt/Wingless play a key role in embryo development, cell growth (proliferation) and the transformation of cells into specialized types (differentiation). The interesting feature is that these two pathways are highly conserved in humans and when mutations arise tumors appear. The fruit fly wing is a vital experimental model to find future biomedical applications. Marco Milán goes on to say, “this finding could provide clues about how to repress the cell proliferation signals in cancer”.

The context is relevant
Furthermore, the research has elucidated the relationship between Notch and Wnt/Wingless in the control of proliferation and the development of the fly wing. In fact, Notch has a repressor function, that is to say, when it is activated the cell division machinery is arrested. Only when Wnt/Wingless starts to work is Notch silenced, thereby triggering the cascade of genes that allow proliferation. “Notch works in this context as a tumor suppressor”, explains Milán, “while Wnt/Wingless acts as an oncogen, that is, by canceling the action of Notch it allows the cell division machinery to operate”. But the fundamental point for the researchers is that Notch and Wnt/Wingless can interchange their roles depending on the context in which they are operating because the true executors of the action are the genes that these proteins regulate, in this case dMyc and bantam.

Researchers ask how, for example, in function of the tissue that is affected, Notch can serve as a “tumor suppressor” or as an oncogene. The conclusions drawn from this study, point to effectors being regulated by this pathway. “We have highlighted the importance of the context in which these signaling pathways work and that knowledge about the underlying regulatory elements is crucial to understand how a certain function is performed”, explains Herranz.

According to Milán, diseases like cancer cannot be understood without taking into account how the distinct elements are integrated: that is to say, crosstalk between neighboring cells, effector genes and cell cycle machinery. “Now we must look for similarities in vertebrates and humans to see whether these elements work in the same way in diseases”, concludes.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org

Further reports about: Milán Notch Wnt/Wingless effector machinery proliferation

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>