Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab in a Drop

06.05.2008
Lab-on-a-chip to the extreme: pocket-sized PCR rapid test including sample preparation

Analysis and diagnosis in a chip format are coming of age, but their practical application has been limited because until now, the sample usually had to be prepared separately and on a nonminiaturized scale.

Jürgen Pipper and his team at the Institute of Bioengineering and Nanotechnology in Singapore want to change this. They have now developed a rapid test for genetic diagnosis that combines the preparation of biological samples with a polymerase chain reaction (PCR) on one chip.

As they report in the journal Angewandte Chemie, the “laboratory device” for all steps in this system is a single drop containing magnetic nanoparticles, which is moved across the chip by a magnetic field.

... more about:
»Magnetic »PCR »blood »droplet »sample

PCR allows gene sequences to be duplicated and identified—to identify a disease trigger, for example. In this process, the sample must cycle through a specific sequence of temperatures. Because of the slow heating and cooling processes, laboratory PCR usually takes several hours. The new chip PCR requires only minutes, including for the sample preparation.

In contrast to other chip-based methods, the actual sample, such as a drop of blood, can be placed directly on the PCR chip, where it is mixed with a drop that contains magnetic particles. These particles are equipped with antibodies on their surface, antibodies that bind specifically to the interesting cells in the blood. By moving a magnet underneath the chip, a droplet containing the bound magnetic particles is physically pulled out of the blood droplet and moved on to the next station—a droplet of washing liquid. The magnetic droplet is combined with the washing droplet and then pulled out again through movement of the magnet. Another droplet then delivers the enzymes and reagents necessary for cell disruption.

The last station is the PCR station. After combination with a reagent droplet, the magnetic droplet is moved around like a clockwork, passing again and again through four different zones set to the temperatures necessary for PCR. Each cycle lasts 8 seconds. A fluorescence detector over one of the zones monitors the progress of the PCR (real-time PCR) and indicates whether the desired gene sequence is present and in what amount.

With their new PCR chip, the researchers were able to isolate 30 cells implanted with the genetic information for a green-fluorescing protein from 25 µL of blood, concentrate them 100-fold, wash them, rupture them, and detect the gene for the green protein by real-time PCR—all within just 17 minutes!

Author: Jürgen Pipper, Institute of Bioengineering and Nanotechnology (Singapore), http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Title: Clockwork PCR Including Sample Preparation

Angewandte Chemie International Edition 2008, 47, No. 21, 3900–3904, doi: 10.1002/anie.200705016

Jürgen Pipper | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Further reports about: Magnetic PCR blood droplet sample

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>