Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male seahorses are nature's Mr. Mom

05.05.2008
Male seahorses are nature’s real-life Mr. Moms – they take fathering to a whole new level: Pregnancy.

Although it is common for male fish to play the dominant parenting role, male pregnancy is a complex process unique to the fish family Syngnathidae, which includes pipefish, seahorses and sea dragons. Texas A&M University evolutionary biology researcher Adam Jones and colleagues in his lab are studying the effects of male pregnancy on sex roles and sexual selection of mates and are trying to understand how the novel body structures necessary for male pregnancy evolved. By doing this, the researchers hope to gain a better understanding of the evolutionary mechanisms responsible for changes in the structure of organisms over time.

“We are using seahorses and their relatives to address one of the most exciting areas of research in modern evolutionary biology: the origin of complex traits,” Jones said. “The brood pouch on male seahorses and pipefish where females deposit eggs during mating is a novel trait that has had a huge impact on the biology of the species because the ability for males to become pregnant has completely changed the mating dynamics.”

When seahorses mate, the female inserts her ovipositor into the male’s brood pouch (an external structure that grows on the body of the male) and deposits her unfertilized eggs into the pouch. The male then releases sperm into the pouch to fertilize the eggs. “It wouldn’t be that interesting if the brood pouch were just a flap of skin where the females put regular fish eggs and they developed in the bag instead of on the sea floor,” Jones said. “But the male pregnancy in some species of seahorses and pipefish is physiologically much more complex than that.”

... more about:
»Evolutionary »Jones »Sex »Trait »brood »deposit »mate »mating »pipefish »pouch »pregnancy »species »steps

After the female deposits her unfertilized eggs into the male, the outer shell of the eggs breaks down, and tissue from the male grows up around the eggs in the pouch. After fertilizing the eggs, the male closely controls the prenatal environment of the embryos in his pouch. The male keeps blood flowing around the embryos, controls the salt concentrations in the pouch, and provides oxygen and nutrition to the developing offspring through a placenta-like structure until he gives birth.

Male pregnancy has interesting implications for sex roles in mating, Jones explained, because in most species, males compete for access to females, so you usually see the evolution of secondary sex traits in males (for example, a peacock’s tail or antlers in deer). But in some species of pipefish, the sex roles are reversed because males become pregnant and there is limited brood pouch space. So females compete for access to available males, and thus secondary sex traits (such as brightly colored ornamentation) evolve in female pipefish instead of males.

“From a research standpoint, it’s interesting because there aren’t very many species in which there is a sex role reversal,” Jones said. “It provides a unique opportunity to study sexual selection in this reversed context.”

To study the mating behavior of seahorses and pipefish, Jones’ lab uses molecular markers for forensic maternity analysis to figure out the mother of a male’s offspring. The lab found that gulf pipefish mate according to the “classic polyandry” system, where each male receives eggs from a single female per pregnancy, but females can mate with multiple males. Because attractive females can mate multiple times, this system results in very strong competition in sexual selection, and female gulf pipefish have evolved strong secondary sexual traits, Jones said.

Seahorses, however, are monogamous within a breeding season, and each seahorse only mates with one other seahorse. In this system, if there are equal sex ratios, there is not as much competition among females because there are enough mates for everyone, Jones explained. So seahorses have not evolved the strong secondary sexual traits that pipefish have.

Male pregnancy also results in a reversal in sex-related behaviors, Jones said. “Females exhibit a competitive behavior that’s normally a male-type attribute, and males end up being choosy, which is normally a more female-type attribute,” he said. His lab studies the evolutionary steps leading to that reversal in behavior and the role that hormones play in the change.

Jones’ lab also studies how the brood pouch first evolved in seahorses and pipefish. “A big question in evolutionary biology is how a novel structure gets all of the necessary genes and parts to function,” Jones said. “So we are trying to understand how the brood pouch and the genes required for male pregnancy arose over evolutionary time.”

One of the interesting things about the brood pouch is that it appears to have evolved independently multiple times. There are two major lineages of seahorses and pipefish – trunk-brooding and tail-brooding – and the brood pouch structure independently evolved in each of these groups, Jones said.

Another area Jones’ lab is researching is the evolutionary steps that led to the unique overall shape of seahorses. “How do you go from just being a regular-old looking fish to being something really unusual like a seahorse?” Jones said. “There are a lot of evolutionary steps involved in that.”

Jones explained that the first step in the evolutionary process was the elongation of the fish’s body, which the lab is currently studying. The next step was the addition of other unique structural features that seahorses possess, such as the bending of the fish into its unique shape. The head of a seahorse is unusual because unlike most fish, a seahorse’s head is at a 90-degree angle to its body, Jones explained. Seahorses also have a prehensile tail, meaning that, unlike most fish, they can use their tail to grasp onto things.

“These are all interesting changes, and we’re interested in studying how these novel traits arose and the evolutionary steps that led to them,” Jones said. “Ultimately, we hope to gain deeper insights into some of the evolutionary mechanisms responsible for the incredible changes in the structure of organisms that have occurred during the history of life on Earth.”

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Evolutionary Jones Sex Trait brood deposit mate mating pipefish pouch pregnancy species steps

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>