Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male seahorses are nature's Mr. Mom

05.05.2008
Male seahorses are nature’s real-life Mr. Moms – they take fathering to a whole new level: Pregnancy.

Although it is common for male fish to play the dominant parenting role, male pregnancy is a complex process unique to the fish family Syngnathidae, which includes pipefish, seahorses and sea dragons. Texas A&M University evolutionary biology researcher Adam Jones and colleagues in his lab are studying the effects of male pregnancy on sex roles and sexual selection of mates and are trying to understand how the novel body structures necessary for male pregnancy evolved. By doing this, the researchers hope to gain a better understanding of the evolutionary mechanisms responsible for changes in the structure of organisms over time.

“We are using seahorses and their relatives to address one of the most exciting areas of research in modern evolutionary biology: the origin of complex traits,” Jones said. “The brood pouch on male seahorses and pipefish where females deposit eggs during mating is a novel trait that has had a huge impact on the biology of the species because the ability for males to become pregnant has completely changed the mating dynamics.”

When seahorses mate, the female inserts her ovipositor into the male’s brood pouch (an external structure that grows on the body of the male) and deposits her unfertilized eggs into the pouch. The male then releases sperm into the pouch to fertilize the eggs. “It wouldn’t be that interesting if the brood pouch were just a flap of skin where the females put regular fish eggs and they developed in the bag instead of on the sea floor,” Jones said. “But the male pregnancy in some species of seahorses and pipefish is physiologically much more complex than that.”

... more about:
»Evolutionary »Jones »Sex »Trait »brood »deposit »mate »mating »pipefish »pouch »pregnancy »species »steps

After the female deposits her unfertilized eggs into the male, the outer shell of the eggs breaks down, and tissue from the male grows up around the eggs in the pouch. After fertilizing the eggs, the male closely controls the prenatal environment of the embryos in his pouch. The male keeps blood flowing around the embryos, controls the salt concentrations in the pouch, and provides oxygen and nutrition to the developing offspring through a placenta-like structure until he gives birth.

Male pregnancy has interesting implications for sex roles in mating, Jones explained, because in most species, males compete for access to females, so you usually see the evolution of secondary sex traits in males (for example, a peacock’s tail or antlers in deer). But in some species of pipefish, the sex roles are reversed because males become pregnant and there is limited brood pouch space. So females compete for access to available males, and thus secondary sex traits (such as brightly colored ornamentation) evolve in female pipefish instead of males.

“From a research standpoint, it’s interesting because there aren’t very many species in which there is a sex role reversal,” Jones said. “It provides a unique opportunity to study sexual selection in this reversed context.”

To study the mating behavior of seahorses and pipefish, Jones’ lab uses molecular markers for forensic maternity analysis to figure out the mother of a male’s offspring. The lab found that gulf pipefish mate according to the “classic polyandry” system, where each male receives eggs from a single female per pregnancy, but females can mate with multiple males. Because attractive females can mate multiple times, this system results in very strong competition in sexual selection, and female gulf pipefish have evolved strong secondary sexual traits, Jones said.

Seahorses, however, are monogamous within a breeding season, and each seahorse only mates with one other seahorse. In this system, if there are equal sex ratios, there is not as much competition among females because there are enough mates for everyone, Jones explained. So seahorses have not evolved the strong secondary sexual traits that pipefish have.

Male pregnancy also results in a reversal in sex-related behaviors, Jones said. “Females exhibit a competitive behavior that’s normally a male-type attribute, and males end up being choosy, which is normally a more female-type attribute,” he said. His lab studies the evolutionary steps leading to that reversal in behavior and the role that hormones play in the change.

Jones’ lab also studies how the brood pouch first evolved in seahorses and pipefish. “A big question in evolutionary biology is how a novel structure gets all of the necessary genes and parts to function,” Jones said. “So we are trying to understand how the brood pouch and the genes required for male pregnancy arose over evolutionary time.”

One of the interesting things about the brood pouch is that it appears to have evolved independently multiple times. There are two major lineages of seahorses and pipefish – trunk-brooding and tail-brooding – and the brood pouch structure independently evolved in each of these groups, Jones said.

Another area Jones’ lab is researching is the evolutionary steps that led to the unique overall shape of seahorses. “How do you go from just being a regular-old looking fish to being something really unusual like a seahorse?” Jones said. “There are a lot of evolutionary steps involved in that.”

Jones explained that the first step in the evolutionary process was the elongation of the fish’s body, which the lab is currently studying. The next step was the addition of other unique structural features that seahorses possess, such as the bending of the fish into its unique shape. The head of a seahorse is unusual because unlike most fish, a seahorse’s head is at a 90-degree angle to its body, Jones explained. Seahorses also have a prehensile tail, meaning that, unlike most fish, they can use their tail to grasp onto things.

“These are all interesting changes, and we’re interested in studying how these novel traits arose and the evolutionary steps that led to them,” Jones said. “Ultimately, we hope to gain deeper insights into some of the evolutionary mechanisms responsible for the incredible changes in the structure of organisms that have occurred during the history of life on Earth.”

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Evolutionary Jones Sex Trait brood deposit mate mating pipefish pouch pregnancy species steps

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>