Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report the cloning of a key group of human genes, the protein kinases

05.05.2008
Although the human genome has been sequenced, research into mechanism of action of genes has been hampered by the fact that most human genes have not been isolated.

This is true for even the most common class of cancer-associated genes, the protein kinases, which mediate the majority of signaling events in cells by phosphorylating and modulating the activity of other proteins. It has been estimated by systematic gene sequencing efforts that up to a quarter of kinases may play a role in human cancers.

In a study published in the 2nd of May issue of Cell, a research teams led by Professor Jussi Taipale from the National Public Health Institute and University of Helsinki, Finland, Professor Olli Kallioniemi from Institute for Molecular Medicine Finland (FIMM), and Dr. Wei-Wu He from the US-based biotechnology company Origene Technologies, Inc., report cloning of nearly all predicted human protein kinase genes in functional form, and generation of a corresponding set of kinases lacking catalytic activity that are necessary for functional studies. They further used the kinome collection in several high-throughput screens, including a screen which identified two novel kinases regulating the Hedgehog signaling pathway – a key pathway linked to multiple types of human cancer. In addition, together with the group of Dr. Päivi Ojala, University of Helsinki, they identified a novel kinase required for activation of Kaposi’s sarcoma herpesvirus.

“The isolated kinase genes form a resource that scientist can now use to systematically map kinase signaling networks in different cellular disease models. The kinases are also promising targets for therapeutic intervention in the treatment of various cancers”, Professor Taipale states.

... more about:
»Foundation »Kinase »Protein

The study was financially supported by the Finnish Academy Centre of Excellence for Translational Genome-Scale Biology, the European Union FP6 Tumorhost genomics and INCA -projects, Biocentrum Helsinki, University of Helsinki, The Sigrid Juselius Foundation, The Emil Aaltonen Foundation, The Finnish Cultural Foundation, The Maud Kuistila Memorial Foundation and the Finnish Cancer Organisations.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Foundation Kinase Protein

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>