Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequence that can make half of us fatter is discovered

05.05.2008
A gene sequence linked to an expanding waist line, weight gain and a tendency to develop type 2 diabetes has been discovered as part of a study published today in the journal Nature Genetics.

The study also shows that the gene sequence is significantly more common in those with Indian Asian than European ancestry. The research, which was funded by the British Heart Foundation, could lead to better ways of treating obesity.

Scientists from Imperial College London and other international institutions have discovered that the sequence is associated with a 2cm expansion in waist circumference, a 2kg gain in weight, and a tendency to become resistant to insulin, which can lead to type 2 diabetes. The sequence is found in 50% of the UK population.

“Until now, we have understood remarkably little about the genetic component of common problems linked with obesity, such as cardiovascular disease and diabetes,” said Professor Jaspal Kooner, the paper’s senior author from the National Heart and Lung Institute at Imperial College London. “Finding such a close association between a genetic sequence and significant physical effects is very important, especially when the sequence is found in half the population.”

... more about:
»Cardiovascular »Genetic »discovered »obesity

The study shows that the sequence is a third more common in those with Indian Asian than in those with European ancestry. This could provide a possible genetic explanation for the particularly high levels of obesity and insulin resistance in Indian Asians, who make up 25% of the world’s population, but who are expected to account for 40% of global cardiovascular disease by 2020.

The new gene sequence sits close to a gene called MC4R, which regulates energy levels in the body by influencing how much we eat and how much energy we expend or conserve. The researchers believe the sequence is involved in controlling the MC4R gene, which has also been implicated in rare forms of extreme childhood obesity.

Previous research on finding the genetic causes of obesity has identified other energy-conserving genes. Combining knowledge about the effects of all these genes could pave the way for transforming how obesity is managed.

“A better understanding of the genes behind problems such as diabetes and cardiovascular disease means that we will be in a good position to identify people whose genetic inheritance makes them most susceptible,” added Professor Kooner. “We can’t change their genetic inheritance. But we can focus on preventative measures, including life-style factors such as diet and exercise, and identifying new drug targets to help reduce the burden of disease.“

The research was carried out as part of the London Life Sciences Population (LOLIPOP) study of environmental and genetic causes of cardiovascular disease, diabetes and obesity in approximately 30,000 UK citizens of Indian Asian and European ancestry. The scientists looked at the association between unique genetic markers, called single nuclear polymorphisms, and physical traits linked with obesity, such as waist circumference and insulin resistance.

“The studies we carry out through LOLIPOP are providing unique and important data,” explained lead author Dr John Chambers from the Department of Epidemiology and Public Health at Imperial College London. “The number of people involved, the comparisons between two ancestries, and the detail with which we can explore genetic and environmental effects are helping us identify crucial linkages.”

This research was carried out by scientists at Imperial College London, University of Michigan, USA, and the Pasteur Institute, France.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Cardiovascular Genetic discovered obesity

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>