Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting wise to the influenza virus’ tricks

05.05.2008
A high-resolution image of an influenza virus protein opens the way to design new anti-viral drugs

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. New drugs and vaccines to halt the spread of the virus are badly needed.

Now one of the tactics used by influenza virus to take over the machinery of infected cells has been laid bare by structural biologists at the European Molecular Biology Laboratory (EMBL) and the joint Unit of Virus Host-Cell Interaction of EMBL, the University Joseph Fourier and National Centre for Scientific Research (CNRS), in Grenoble, France. In the current issue of Nature Structural and Molecular Biology they publish a high-resolution image of a key protein domain whose function is to allow the virus to multiply by hijacking the host cell protein production machinery. The findings open the way for the design of new drugs to combat future influenza pandemics.

Upon infection the influenza virus starts multiplying in the cells of its host. One protein that is crucial in this process is the viral polymerase - the enzyme that copies its genetic material and helps to produce more viruses. One component of the polymerase, called PB2, plays a key role in stealing an important tag from host cell RNA molecules to direct the protein production machinery towards the synthesis of viral proteins. Researchers of the groups of Stephen Cusack and Darren Hart at EMBL Grenoble have identified the PB2 domain responsible for binding the tag, produced crystals of it and examined them with the powerful X-ray beams of the European Synchrotron Radiation Facility (ESRF).

... more about:
»Cap »EMBL »Host »Influenza »PB2 »RNA »Viral »mRNA

“Viruses are masters of cunning when it comes to hijacking the normal functioning of the host cell. The influenza virus steals a password from host messenger RNAs, molecules that carry the instructions for protein production, and uses it to gain access to the cell’s protein-making machinery for its own purposes,” says Cusack.

The password is a short extra piece of RNA, a modified RNA base called a ‘cap’, which must be present at the beginning of all messenger RNAs (mRNAs) to direct the cell's protein-synthesis machinery to the starting point. The viral polymerase binds to host cell mRNA via its cap, cuts the cap off and adds it to the beginning of its own mRNA – a process known as ‘cap snatching’. The capped viral mRNA can then be recognised by the host cell machinery allowing viral proteins to be made, at the expense of host cell proteins.

The atomic resolution image the EMBL scientists generated of a PB2 domain bound to a cap reveals for the first time the individual amino acids responsible for recognising this special structure. The central interaction is a sandwich with two PB2 amino acids stacking either side of the cap. Whilst this recognition mechanism is similar to other cap-binding proteins, its structural details are distinct. Collaborators at the Centro Nacional de Biotecnologia in Madrid showed that disruption of the PB2 cap-binding site prevents the influenza virus from replicating.

“These findings suggest that the PB2 cap-binding site is a very promising target for anti-influenza drugs,” Hart says. “Our new structural insights will help us design mimics of the cap that would inhibit viral replication and hence reduce the spread of virus and the severity of the infection.”

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

Further reports about: Cap EMBL Host Influenza PB2 RNA Viral mRNA

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>