Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’fuzzy’ polymers could improve the performance of electronic brain implants

28.06.2002


A newly developed polymer surface could improve the interface between electronic implants and living tissue, helping to advance a technology that may one day enable the blind to see and the paralyzed to walk. The findings were described today at the 34th Central Regional Meeting of the American Chemical Society, the world’s largest scientific society. The meeting is being held at Eastern Michigan University in Ypsilanti.



David C. Martin, Director of the Macromolecular Science and Engineering Center at the University of Michigan, presented research on polymers that can be processed into a "fuzzy" form to enhance the compatibility of electronic implants with brain tissue.

Electrodes implanted in the brain can pick up electrical signals sent back and forth by nerve cells. The tiny devices — about a millimeter long — are coated with growth factors that encourage brain tissue to grow into them. The intent is for each probe to make contact with a series of neurons, allowing it to receive signals it can interpret and use to activate an external device. The technique has been called a spinal cord bypass. It could help patients with brain disorders and paralysis operate artificial limbs or control a computer mouse by simply thinking about the task.


There is, however, still a long way to go before humans will be effortlessly controlling external devices with their mind. "Our interest is in finding materials and processing schemes that can help the electrodes function better for long periods of time," Martin said.

Initial experiments in guinea pigs showed that these electrodes do not make efficient contact with the brain. "The implanted electrodes are solid, hard and smooth," Martin said, "whereas the brain is soft, wet and alive." The differences can cause the electrodes to lose contact with the brain, blocking the signal.

Martin and his team have designed rough-surfaced, fuzzy polymers with various grooves and depressions designed to mesh better with neurons. "The scheme is to have these electrodes make a connection with the neurons quickly, before the other cells get in and wall them off," Martin said.

To further encourage connection, Martin and his team have incorporated biological molecules in the polymer coating to selectively attract target neurons. In guinea pigs, the researchers found that uncoated electrodes came out clean after remaining in the brain for a period of time, while coated electrodes were covered with neural tissue. This indicates that the neurons are hanging on to the biologically doped coating, Martin said.

The team also found that the fuzzy surface of the polymer coating, in addition to improving contact with brain tissue, could be used to fine-tune its ability to conduct electrical signals.

Martin’s research is being conducted in collaboration with the University of Michigan Center for Neural Communications Technology, the Kresge Hearing Research Institute, and the Keck Center for Tissue Engineering at the University of Utah. Xinyan "Tracy" Cui, Ph.D., who is now working at Unilever, did much of the work that was discussed in the presentation.

Sharon Worthy | EurekAlert!

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>