Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’fuzzy’ polymers could improve the performance of electronic brain implants

28.06.2002


A newly developed polymer surface could improve the interface between electronic implants and living tissue, helping to advance a technology that may one day enable the blind to see and the paralyzed to walk. The findings were described today at the 34th Central Regional Meeting of the American Chemical Society, the world’s largest scientific society. The meeting is being held at Eastern Michigan University in Ypsilanti.



David C. Martin, Director of the Macromolecular Science and Engineering Center at the University of Michigan, presented research on polymers that can be processed into a "fuzzy" form to enhance the compatibility of electronic implants with brain tissue.

Electrodes implanted in the brain can pick up electrical signals sent back and forth by nerve cells. The tiny devices — about a millimeter long — are coated with growth factors that encourage brain tissue to grow into them. The intent is for each probe to make contact with a series of neurons, allowing it to receive signals it can interpret and use to activate an external device. The technique has been called a spinal cord bypass. It could help patients with brain disorders and paralysis operate artificial limbs or control a computer mouse by simply thinking about the task.


There is, however, still a long way to go before humans will be effortlessly controlling external devices with their mind. "Our interest is in finding materials and processing schemes that can help the electrodes function better for long periods of time," Martin said.

Initial experiments in guinea pigs showed that these electrodes do not make efficient contact with the brain. "The implanted electrodes are solid, hard and smooth," Martin said, "whereas the brain is soft, wet and alive." The differences can cause the electrodes to lose contact with the brain, blocking the signal.

Martin and his team have designed rough-surfaced, fuzzy polymers with various grooves and depressions designed to mesh better with neurons. "The scheme is to have these electrodes make a connection with the neurons quickly, before the other cells get in and wall them off," Martin said.

To further encourage connection, Martin and his team have incorporated biological molecules in the polymer coating to selectively attract target neurons. In guinea pigs, the researchers found that uncoated electrodes came out clean after remaining in the brain for a period of time, while coated electrodes were covered with neural tissue. This indicates that the neurons are hanging on to the biologically doped coating, Martin said.

The team also found that the fuzzy surface of the polymer coating, in addition to improving contact with brain tissue, could be used to fine-tune its ability to conduct electrical signals.

Martin’s research is being conducted in collaboration with the University of Michigan Center for Neural Communications Technology, the Kresge Hearing Research Institute, and the Keck Center for Tissue Engineering at the University of Utah. Xinyan "Tracy" Cui, Ph.D., who is now working at Unilever, did much of the work that was discussed in the presentation.

Sharon Worthy | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>