Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.VA. scientists find new piece of gene expression puzzle

28.06.2002


Scientists at the University of Virginia Health System have identified another step in the mysterious process of gene regulation -- what turns genes on or off, making them cause or suppress disease and other physical developments in humans. As reported in this week’s issue of the scientific journal Nature, a chemical group called ubiquitin has been shown to lie upstream of a switch that seems to control whether a gene is on or off. "Ubiquitin was first discovered on histones long ago, but before this study, we really did not know what it was doing in chromatin," said lead author and investigator Zu-Wen Sun, senior post-doctoral fellow in the Department of Biochemistry and Molecular Genetics at U.Va. Ubiquitin is one of manydistinct kinds of chemical "flags" that are known to be present on histone proteins.

Histones are protein building blocks around which the DNA is coiled much like a Slinky toy. Together, they form a structure called chromatin, where additional levels of gene regulation occur outside the DNA itself. One mechanism for regulating gene expression in the form of chromatin is through the addition or removal of chemical groups that are attached to the histone proteins. These histone proteins are nearly identical in most complex living organisms, from humans to yeast, which was used as a model in this study. They are highly decorated with different kinds of chemical groups including methyl- and acetyl- groups. Distinct patterns of these marks may operate together to form a ’histone code’ that, in turn, precedes and influences gene activities within the chromatin, according to studies published last year by C. David Allis, Byrd Professor of Biochemistry and Molecular Genetics at U.Va., who is co-author of the new study.

The four major types of histones each have a long "tail" which "wags" outside the surface of the chromatin fiber. Last year’s studies examined lysines at the fourth (K4) and ninth (K9) positions on the tail of one of the histones, H3, and revealed that when a chemical methyl group is added to these two positions, it turns genes on or off, acting much like a master control switch according to a histone code.



The new study found an unexpected mechanism that dictates whether methylation occurs at the K4 position of H3. It showed that another chemical group called ubiquitin, which is attached on the tail of a completely different histone, H2B, affected methylation of lysine at this K4 position on the H3 tail. This phenomenon, referred to as "trans-tail" regulation of the histone’s chemical changes, was unexpected, Sun said, because all other related chemical reactions previously identified, such as methylation of K4 and K9 lysines, occurred in relatively close proximity on the same histone tail.

"It is the first time that the modification on one histone’s tail has been seen to affect what occurs on another histone tail," he said. "And, in addition, we now understand better how the ubiquitin and the enzyme responsible for adding it to the histone H2B in the first place is linked to gene regulation."

Sun and Allis said that defects in the ubiquitin pathway in mice already have been generally connected to male infertility. It is possible that the problem could be traced from defects in the addition of the ubiquitin group in chromatin, to defects in the addition of the methyl group, and to subsequent changes in gene expression, which then disturbs proper cell differentiation.

"It means we have to start looking at how the whole group of these histone proteins functions together as a unit, as well as individually," Allis said. "If the ubiquitin chemical flag seems to govern methylation of lysine at K4, but not elsewhere, there is a selectivity going on, and it’s remarkably more complicated than we thought. When we reported on the methylation of lysine at K4 and K9 last summer, we had no clue it was being regulated by something else as described in our new study. So we would like to find out what is it about ubiquitin that causes such a dramatic influence on histone methylation.

"It’s a new chain reaction for chromatin," he said. "It is a major new finding in this field with a very old histone modification."

The study was funded by the National Institutes of Health and the U.Va. Cancer Center.

Catherine Wolz | EurekAlert!
Further information:
http://www.nih.gov/
http://hsc.virginia.edu/medcntr/cancer/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>