Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful blood glucose levels linked to defective gene

02.05.2008
A genetic mutation that can raise the amount of glucose in a person's blood to harmful levels is identified today in a study in the journal Science.

High levels of blood glucose increase the risk of cardiovascular disease and early death, even in healthy people who do not have diabetes and whose blood glucose levels are at the higher end of the range considered 'normal' by doctors. One in five people in the UK has a high blood glucose level.

The study, by researchers from Imperial College London, the French National Research Institute and McGill University in Canada, reveals an association between high levels of blood glucose and a mutation in a gene known as G6PC2 or IGRP.

The research shows that the mutated IGRP gene blocks the action of a sensor called glucokinase. By stopping glucokinase from doing its job, the gene prevents the body from keeping tight control over its levels of blood glucose. Glucokinase works by signalling to cells known as beta cells which then secrete insulin to keep blood glucose levels under control.

... more about:
»Genetic »Glucose »IGRP »Mutation »blood

The researchers hope their findings could enable a therapy to be developed to stop the defective IGRP gene from blocking the glucokinase sensor. This would restore control of glucose levels in the blood and help prevent these levels from becoming too high.

The researchers believe that the mutation in the IGRP gene could cause an increase of around five percent in the level of glucose in the blood. This small percentage increase would be enough to raise a person's risk of health problems because levels of blood glucose are so tightly controlled.

Epidemiological studies have shown that 80 percent of the risk of cardiovascular disease is related to a blood glucose level just above the average. High blood glucose levels are linked to obesity, poor nutrition and lack of exercise.

Professor Philippe Froguel, leading author of the research from the French National Research Institute and the Department of Genomic Medicine at Imperial College London, said: "Having a high level of blood glucose is a bit like having high cholesterol or high blood pressure in that the higher the level, the greater your risk of serious health problems. Our study helps unravel the genetic reasons why some people have higher levels of glucose in their blood than others.

"At present, doctors advise people with high blood glucose levels to lose weight and exercise. We hope that ultimately our research will mean we can develop new treatments to stop people from developing high blood glucose levels, which would enable them to live longer and healthier lives," added Professor Froguel.

The scientists reached their conclusions after comparing the genetic makeup of 654 non diabetic people with differing levels of blood glucose, from the low to the high end of the 'normal' range. The researchers looked at mutations in the building blocks, called

nucleotides, which make up DNA.

There are mutations, known as single-nucleotide polymorphisms, in around one in every 600 nucleotides. The scientists examined over 392,000 of these mutations to find the ones specific to high blood glucose levels. The researchers confirmed their findings by analysing the genetic makeup of a further 8000 individuals with blood glucose levels within the non diabetic range, to verify that the same genetic mutations were visible in these individuals.

Today's study follows on from a study published in February 2007 by the same team, where they identified the most important genes associated with a risk of developing type-2 diabetes.

The research was funded by Genome Canada, Genome Quebec, the French National Agency for Research, the Medical Research Council and the National Academia of Finland.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Genetic Glucose IGRP Mutation blood

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>