Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful blood glucose levels linked to defective gene

02.05.2008
A genetic mutation that can raise the amount of glucose in a person's blood to harmful levels is identified today in a study in the journal Science.

High levels of blood glucose increase the risk of cardiovascular disease and early death, even in healthy people who do not have diabetes and whose blood glucose levels are at the higher end of the range considered 'normal' by doctors. One in five people in the UK has a high blood glucose level.

The study, by researchers from Imperial College London, the French National Research Institute and McGill University in Canada, reveals an association between high levels of blood glucose and a mutation in a gene known as G6PC2 or IGRP.

The research shows that the mutated IGRP gene blocks the action of a sensor called glucokinase. By stopping glucokinase from doing its job, the gene prevents the body from keeping tight control over its levels of blood glucose. Glucokinase works by signalling to cells known as beta cells which then secrete insulin to keep blood glucose levels under control.

... more about:
»Genetic »Glucose »IGRP »Mutation »blood

The researchers hope their findings could enable a therapy to be developed to stop the defective IGRP gene from blocking the glucokinase sensor. This would restore control of glucose levels in the blood and help prevent these levels from becoming too high.

The researchers believe that the mutation in the IGRP gene could cause an increase of around five percent in the level of glucose in the blood. This small percentage increase would be enough to raise a person's risk of health problems because levels of blood glucose are so tightly controlled.

Epidemiological studies have shown that 80 percent of the risk of cardiovascular disease is related to a blood glucose level just above the average. High blood glucose levels are linked to obesity, poor nutrition and lack of exercise.

Professor Philippe Froguel, leading author of the research from the French National Research Institute and the Department of Genomic Medicine at Imperial College London, said: "Having a high level of blood glucose is a bit like having high cholesterol or high blood pressure in that the higher the level, the greater your risk of serious health problems. Our study helps unravel the genetic reasons why some people have higher levels of glucose in their blood than others.

"At present, doctors advise people with high blood glucose levels to lose weight and exercise. We hope that ultimately our research will mean we can develop new treatments to stop people from developing high blood glucose levels, which would enable them to live longer and healthier lives," added Professor Froguel.

The scientists reached their conclusions after comparing the genetic makeup of 654 non diabetic people with differing levels of blood glucose, from the low to the high end of the 'normal' range. The researchers looked at mutations in the building blocks, called

nucleotides, which make up DNA.

There are mutations, known as single-nucleotide polymorphisms, in around one in every 600 nucleotides. The scientists examined over 392,000 of these mutations to find the ones specific to high blood glucose levels. The researchers confirmed their findings by analysing the genetic makeup of a further 8000 individuals with blood glucose levels within the non diabetic range, to verify that the same genetic mutations were visible in these individuals.

Today's study follows on from a study published in February 2007 by the same team, where they identified the most important genes associated with a risk of developing type-2 diabetes.

The research was funded by Genome Canada, Genome Quebec, the French National Agency for Research, the Medical Research Council and the National Academia of Finland.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Genetic Glucose IGRP Mutation blood

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>