Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful blood glucose levels linked to defective gene

02.05.2008
A genetic mutation that can raise the amount of glucose in a person's blood to harmful levels is identified today in a study in the journal Science.

High levels of blood glucose increase the risk of cardiovascular disease and early death, even in healthy people who do not have diabetes and whose blood glucose levels are at the higher end of the range considered 'normal' by doctors. One in five people in the UK has a high blood glucose level.

The study, by researchers from Imperial College London, the French National Research Institute and McGill University in Canada, reveals an association between high levels of blood glucose and a mutation in a gene known as G6PC2 or IGRP.

The research shows that the mutated IGRP gene blocks the action of a sensor called glucokinase. By stopping glucokinase from doing its job, the gene prevents the body from keeping tight control over its levels of blood glucose. Glucokinase works by signalling to cells known as beta cells which then secrete insulin to keep blood glucose levels under control.

... more about:
»Genetic »Glucose »IGRP »Mutation »blood

The researchers hope their findings could enable a therapy to be developed to stop the defective IGRP gene from blocking the glucokinase sensor. This would restore control of glucose levels in the blood and help prevent these levels from becoming too high.

The researchers believe that the mutation in the IGRP gene could cause an increase of around five percent in the level of glucose in the blood. This small percentage increase would be enough to raise a person's risk of health problems because levels of blood glucose are so tightly controlled.

Epidemiological studies have shown that 80 percent of the risk of cardiovascular disease is related to a blood glucose level just above the average. High blood glucose levels are linked to obesity, poor nutrition and lack of exercise.

Professor Philippe Froguel, leading author of the research from the French National Research Institute and the Department of Genomic Medicine at Imperial College London, said: "Having a high level of blood glucose is a bit like having high cholesterol or high blood pressure in that the higher the level, the greater your risk of serious health problems. Our study helps unravel the genetic reasons why some people have higher levels of glucose in their blood than others.

"At present, doctors advise people with high blood glucose levels to lose weight and exercise. We hope that ultimately our research will mean we can develop new treatments to stop people from developing high blood glucose levels, which would enable them to live longer and healthier lives," added Professor Froguel.

The scientists reached their conclusions after comparing the genetic makeup of 654 non diabetic people with differing levels of blood glucose, from the low to the high end of the 'normal' range. The researchers looked at mutations in the building blocks, called

nucleotides, which make up DNA.

There are mutations, known as single-nucleotide polymorphisms, in around one in every 600 nucleotides. The scientists examined over 392,000 of these mutations to find the ones specific to high blood glucose levels. The researchers confirmed their findings by analysing the genetic makeup of a further 8000 individuals with blood glucose levels within the non diabetic range, to verify that the same genetic mutations were visible in these individuals.

Today's study follows on from a study published in February 2007 by the same team, where they identified the most important genes associated with a risk of developing type-2 diabetes.

The research was funded by Genome Canada, Genome Quebec, the French National Agency for Research, the Medical Research Council and the National Academia of Finland.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Genetic Glucose IGRP Mutation blood

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>